
BSc (Hons) Computer Science
University of Portsmouth
Third Year

Distributed Systems and Security
M30225

Semester 2

Hugh Baldwin
hugh.baldwin@myport.ac.uk



CONTENTS

Contents
1 Lecture - Introduction to DS&S 2

2 Lecture - Distributed Systems 3

3 Lecture - Distributed Shared Memory 5

4 Lecture - Web Services and Naming Systems 7

Hugh Baldwin
https://github.com/HughTB/cs-notes

1 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Introduction to DS&S

Lecture - Introduction to DS&S
10:00 27/01/25 Amanda Peart

Module Info
Spit into two parts, Distributed Systems covered in the first 8 weeks and lectured by Amanda, Security
covered in the last 4 weeks, lectured by Fahad.

• Distributed Systems covered by a 60% exam, Weds 26th March

• Security covered by a 40% exam

Hugh Baldwin
https://github.com/HughTB/cs-notes

2 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Distributed Systems

Lecture - Distributed Systems
10:00 27/01/25 Amanda Peart

What is a Distributed System?
A distributed system is the interactions between two or more computers, which are connected in some
way to form a single computing system. The twomain issues with distributed systems are how to connect
the devices, and how to make them interact.

Definition

A distributed system is one which is made up of a set of independent computers which appear to
the user as a single system. They are typically connected using a coordination system, which may
use any of many networking and communications standards.

Networking Requirements
Most systems typically require fast and reliable networking to coordinate between systems. The often also
require access to large amounts of data, which may needed to be accessed by any or all of the systems at
the same time, so fast and reliable storage is also necessary.

Parts of a Distributed System
There are several levels to a distributed system, fromwhat runs on eachmachine to the systemas awhole.
The low-level systems work on a per-machine level, and include processes, threads, concurrency, etc.
Middleware acts to synchronise and coordinate the different parts of the system and ensure efficiency.
The application itself sits on top of the Middleware and manages high-availability and fault tolerance.

Design Issues

Naming
It’s important that every part of a distributed system has a useful and descriptive name which have a
global meaning. This may be supported by a name interpretation or translation system to allow programs
to access named resources.

Access
It’s important to limit who and what can access the system, both in terms of security and accessibility.
They should support as many systems as possible

Communication
The performance and reliability of the communication system is very important to both the availability and
overall performance of the system as a whole.

Hugh Baldwin
https://github.com/HughTB/cs-notes

3 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Distributed Systems

Software
Data abstraction is very important as it allows many different systems to interact with the same data on
a high-level without needing to convert data constantly between different formats. Part of this is well
designed and documented APIs that allow access to the information and systems.

Resource Management
Optimisation of resources is very important to make sure that there is capacity and availability where it’s
needed. This includes load balancing and load shifting.

Consistency
The data must be consistent across the system, and must appear the same for all users.

Hugh Baldwin
https://github.com/HughTB/cs-notes

4 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Distributed Shared Memory

Lecture - Distributed Shared Memory
09:00 17/02/25 Amanda Peart

Distributed Shared Memory (DSM) simplifies communication between nodes in distributed systems by
providing a single memory space that all nodes have equal access to. It simplifies programming, as there
is no need to perform explicit message passing between nodes or processes. It theoretically also reduces
the overhead inherent in resource sharing, as it does not require the data to be duplicated on every node.

DSM is an abstractionwhich allowsmultiple computers which do not share any physicalmemory to access
the same data as if it were a single unified address space. It is usually entirely transparent to the system
running on it, as there is typically no need for the program todirectly interactwith the system implementing
the abstraction.

Key Features
• Transparency– The user and the system do not need to know that the memory is distributed

• Scalability– Nodes should be able to be added and removed without affecting performance or reli-
ability

• Consistency Control– It is essential to ensure that the memory is exactly the same on all nodes at
the same time, to ensure that nodes are not using different or stale values

• Synchronisation–Using locks, semaphores or other synchronisation techniques to prevent conflicts
between nodes

• Performance– Store data locally to ensure quick access

Centralised vs Distributed DSM
• Centralised

– Shared memory managed by a single server

– Data is accessed only through the single server

– Data is stored in a single place

– This makes it easier to manage and ensure consistency, but has a single point of failure and a
large bottleneck on the performance of the single server

• Distributed

– Memory is stored across multiple nodes but appears as one

– Each node manages part of the memory space

– This reduces the reliance on a single machine both in terms of reliability, and performance, but
is significantly harder to manage and ensure consistency between nodes

DSM Models
• Page-Based

– Transfers entire memory pages

Hugh Baldwin
https://github.com/HughTB/cs-notes

5 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Distributed Shared Memory

– Can be efficient for large datasets

– Is susceptible to page faults causing large overhead

• Object-Based

– Transfers single object instances

– Reduced data transfers for each object

– Harder to enforce consistency

• Variable-Based

– Transfers single variable values

– Ideal for sharing small amounts of data infrequently

– Very bad in terms of scalability

• Library-Based

– Run-time RPC/IPC

– Very scalable if implemented correctly

– Code may fail at runtime, causing unrecoverable errors

Consistency Models

Insert table here

Hugh Baldwin
https://github.com/HughTB/cs-notes

6 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Web Services and Naming Systems

Lecture -Web Services andNaming Systems
10:00 22/02/25 Amanda Peart

Web Service Architecture
• Provider

– Creates and offers web services

– Describes their services in a standardised format to be published in a registry

• Registry

– Contains data about services offers by different providers

– Usually includes technical details, as well as company info like addresses and contact details

• Consumer

– Retrieves information about services from the registry

– Uses information from the description to directly connect to the provider and actually use the
service

Web Service Definition Language (WDSL)
WDSL is a standard method of describing the services offered by a web service. It tells the client what
services it offers, how the client should connect to the service, and what the expected results should be.
It specifies the protocols and endpoints used, as well as the location of the service.

Typically formatted as XML, especially when used with SOAP APIs, and tells the client exactly what the
format of SOAP messages should be, both the request the client must make, and the response it should
receive.

Simple Object Access Protocol
AnAPI standardwhichdefineshowwebservices talk to eachother, andhowclients should invokemethods
on the server. Typically uses XML as the serialized format which is exchanged between the client and
server. Each message consists of an envelope that defines what is contained within a message and how
to process it, and a set of standards for how the message is formatted. Most SOAP services use HTTP but
it is not the only protocol that can be used.

Naming Systems

Types of Names
• Human Readable Names– Names used by humans, typically abstracted, e.g. URLs, domain names,
hostnames, etc.

• Identifiers– Unique identifiers used within systems, e.g. IP addresses, MAC addresses, etc.

• Addresses– Internal addresses used by the application, e.g. Memory addresses, storage addresses,
etc.

Hugh Baldwin
https://github.com/HughTB/cs-notes

7 of 8 M30225

https://github.com/HughTB/cs-notes


Lecture - Web Services and Naming Systems

Naming Schemes
• Flat Naming– No structure, typically used in peer-to-peer networking

• Hierarchical Naming– Organised into a hierarchy like a tree, used in DNS, Active Directory, etc.

• Attribute Based Naming– Names based on the attributes of resources

Name Resolution
How names are mapped to an address or identifier. Can be centralized to a single server, or can be dis-
tributed hierarchically, as in DNS. Can also use caching to improve speed and efficiency, but can introduce
consistency issues.

Challenges
Themain challenges in naming schemes are scalability, consistency and security. This is because a naming
system needs to be able to handle a large number of names, always be correct, and needs to prevent
unauthorized access to name resolution and spoofing naming. There’s also the issue of making a naming
system that actuallymakes sense, since itmay be based heavily on business-specific schemes, whichmay
not be useful to anyone outside of the organization.

Hugh Baldwin
https://github.com/HughTB/cs-notes

8 of 8 M30225

https://github.com/HughTB/cs-notes

	Lecture - Introduction to DS&S
	Lecture - Distributed Systems
	Lecture - Distributed Shared Memory
	Lecture - Web Services and Naming Systems

