
BSc (Hons) Computer Science
University of Portsmouth
Third Year

Theoretical Computer Science
M21276

Semester 1

Hugh Baldwin
hugh.baldwin@myport.ac.uk

CONTENTS

Contents
I Part A 2

1 Lecture - Induction Lecture 3

2 Lecture - A1: Introduction to Languages 4

3 Lecture - A2: Grammars 8

4 Lecture - A3: Regular Languages 14

5 Lecture - A4: Finite Automata 18

6 Lecture - A5: Finite Automata & Regular Languages 24

7 Lecture - A6: Beyond Regular Languages 28

8 Lecture - A7: Pushdown Automata 30

9 Lecture - A8: Applications of Context-Free Grammars 34

10 Lecture - A9: Turing Machines 37

11 Lecture - A10: Computing with TMs & Alternative Definitions 39

12 Lecture - A11: More About Turing Machines 40

II Part B 42

13 Lecture - B1: Computability and Equivalent Models 43

14 Lecture - B2: Computability and Equivalent Models II 44

15 Lecture - B3: Diagonalisation and the Halting Problem 45

16 Lecture - B4: Undecidable Problems 48

17 Lecture - B5: Introduction to Computational Complexity 49

18 Lecture - B6: Asymptotic Growth 52

19 Lecture - B7: Analysis of Algorithms 54

20 Lecture - B8: Problem Complexity and Classification of Problems 56

21 Lecture - B9: P, NP and NP-Complete Problems 59

22 Lecture - B10: Tackling NP-complete & NP-hard Problems 61

Hugh Baldwin
https://github.com/HughTB/cs-notes

1 of 61 M21276

https://github.com/HughTB/cs-notes

Part I

Part A

Hugh Baldwin
https://github.com/HughTB/cs-notes

2 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - Induction Lecture

Lecture - Induction Lecture
13:00 25/09/24 Janka Chlebikova

Contact Time
• Lectures

– Delivered by Janka

– Slides and videos from Covid times available weekly on Moodle

• Tutorials

– Delivered by either Janka or Dr Paolo Serafino

– Worksheets available with solutions weekly on Moodle

– 5 Groups

– Work through the worksheet solutions

– Kahoot quiz for revision

– ‘Tutorial 0’ available as revision of concepts from DMAFP needed for this module

Assessments
• 50%, 90 minute In-Class Test covering Part A - November 20th, 2pm

• 50%, 90 minute Exam covering Part B (Only) - TB1 Assessment Period (January)

• Deferred assessment covers both Part A & B, so will be harder than the two separate exams

There are two past papers (paper-based, but still relevant to the computer-based test) available for each
of the assessments. As with DMAFP, the solutions are supplied in the form of a crowd-sourced document
that Janka will check over before the exam.

Resources
Lecture slides, videos and tutorial papers are released every week. All of the books on the reading list are
available online through the links on Moodle.

Hugh Baldwin
https://github.com/HughTB/cs-notes

3 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A1: Introduction to Languages

Lecture - A1: Introduction to Languages
13:00 03/10/24 Janka Chlebikova

Languages
In this context, a language is a set of symbolswhich can be combined to create a list of acceptable strings.
There are then also rules which tell us how to combine these strings together, known as grammars. The
combination of an alphabet, list of valid strings and grammars is known as a language. There will be a
formal definition later on.

Definition

An Alphabet is a finite, non-empty set of symbols.

For example, in the English language wewould define the alphabet,A, asA = {a, b, c, d, . . . , x, y, z}. These
symbols can then be combined to create a string.

Definition

A String is a finite sequence of symbols from the alphabet of a language.

With the alphabet A, we could have strings such as ‘cat’, ‘dog’, ‘antidisestablishmentarianism’, etc over
the alphabet. A string with no symbols, and therefore a length of zero, is known as the empty string, and
is denoted by Λ (capital lambda).

Definition

A Language over an alphabet (e.g. English over A) is a set of strings – including Λ – made up of
symbols from A which are considered ‘valid’. They could be valid as per a set of rules, or could be
arbitrary as in most spoken languages.

If we have an alphabet,Σ, thenΣ∗ denotes the infinite set of all stringsmade up of symbols inΣ – including
Λ. Therefore, a language over Σ is any subset of Σ∗.

Example

If Σ = {a, b}, then Σ∗ = {Λ, a, b, aa, ab, ba, bb, . . .}
There are many languages which could be defined over this alphabet, but a few simple one are

• ∅ (The empty set)
• {Λ} (The set containing an empty string)
• {a} (The set containing a)
• The infinite set Σ∗ = {Λ, a, aa, aaa, . . .}

Combining Languages
There are three common ways of combining two languages to create a new language – union, intersection
and product.

Hugh Baldwin
https://github.com/HughTB/cs-notes

4 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A1: Introduction to Languages

Union and Intersection
Since languages are sets of strings, they can be combined as you usually would for any other set with the
usual operations, union and intersection.

Example

If L = {aa, bb, cc} andM = {cc, dd, ee}, then
L ∩M = {cc}, and
L ∪M = {aa, bb, cc, dd, ee}

Product
To combine two languages L andM , we form the set of all concatenations of strings in L with strings In
M . This is known as the product of the two languages.

Definition

To Concatenate two strings is to juxtapose them such that a new string is made by appending the
second string to the end of the first.

Example

If we concatenate the strings ab and ba, the result would be abba.
This can be represented using the function cat, such as cat(ab, ba) = abba

With this definition of concatenation, we can say that the product of two languages, L and M would be
L ·M , where L ·M = {cat(s, t) : s ∈ L and t ∈ M}

Example

If L = {a, b, c} andM = {c, d, e}, then the product of the two languages, L ·M , is the language
L ·M = {ac, ad, ae, bc, bd, be, cc, cd, ce}

Further on Products
It is simple to see that for any language, L, the following simple properties are true:

L · {Λ} = {Λ} · L = L

L · ∅ = ∅ · L = ∅

Commutativity
Aside from the above properties, the product of any two languages is not commutative, and therefore

L ·M ̸= M · L

Hugh Baldwin
https://github.com/HughTB/cs-notes

5 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A1: Introduction to Languages

Example

If L = {a, b} andM = {b, c}, then the product L ·M is the language

L ·M = {ab, ac, bb, bc}

but the productM · L is the language

M · L = {ba, bb, ca, cb}

which are clearly not the same language, as the only common string is bb

Associativity
However, the product of any two languages is associative. This means that if we had any three languages,
L,M andN , then

L · (M ·N) = (L ·M) ·N

Example

If we have the three languages L = {a, b},M = {b, c} andN = {c, d}, then

L · (M ·N) = L · {bc, bd, cc, cd}
= {abc, abd, acc, acd, bbc, bbd, bcc, bcd}

which is the same as

(L ·M) ·N = {ab, ac, bb, bc} ·N
= {abc, abd, acc, acd, bbc, bbd, bcc, bcd}

Powers of Languages

If we have the language L, then the product L · L of the language is denoted by L2. The product Ln for
every n ∈ N is defined as

L0 = {Λ}
Ln = L · Ln−1, ifn > 0

Example

If L = {a, b} then the first few powers of L are

L0 = {Λ}
L1 = L = {a, b}
L2 = L · L = {aa, ab, ba, bb}
L3 = L · L2 = {aaa, aab, aba, abb, baa, bab, bba, bbb}

The Closure of a Language
If L is a language over Σ, then the closure of L is the language denoted by L∗, and the positive closure is
language denoted by L+.

Hugh Baldwin
https://github.com/HughTB/cs-notes

6 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A1: Introduction to Languages

Definition

The Closure of the language L, L∗ is defined as

L∗ = L0 ∪ L1 ∪ L2 ∪ L3 ∪ . . .

and so, if L = {a} then

L∗ = {Λ} ∪ {a} ∪ {aa} ∪ {aaa} ∪ . . .

= {Λ, a, aa, aaa, . . .}

Definition

The Positive Closure the language L, L+ is defined as

L+ = L1 ∪ L2 ∪ L3 ∪ L4 ∪ . . .

and so, if L = {a} then

L+ = {a} ∪ {aa} ∪ {aaa} ∪ {aaaa} ∪ . . .

= {a, aa, aaa, aaaa, . . .}

It then follows that L∗ = L+ ∪ {Λ}, but it’s not necessarily true that L+ = L∗ − {Λ}.

Example

If our alphabet is Σ = {a} and our language is L = {Λ, a}, then

L+ = L∗

Properties of Closures
Based upon these definitions, you can derive some interesting properties of closures.

Example

If L andM are languages over the alphabet Σ, then

{Λ}∗ = ∅∗ = {Λ}
L∗ = L∗ · L∗ = (L∗)∗

Λ ∈ L if and only if L+ = L∗

(L∗ ·M∗)∗ = (L∗ ∪M∗)∗ = (L ∪M)∗

L · (M · L)∗ = (L ·M)∗ · L

These will be explored more during the tutorial session for this week

The Closure of an Alphabet
Going back to the definition of Σ∗ of the alphabet Σ, it lines up perfectly with the definition of a closure
such that Σ∗ is the set of all strings over Σ. This means that there is a nice way to represent Σ∗ as follows

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ . . .

From this, we can also see that Σk denotes the set of all strings over Σ whose length is k.

Hugh Baldwin
https://github.com/HughTB/cs-notes

7 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

Lecture - A2: Grammars
13:00 03/10/24 Janka Chlebikova

As discussed previously, you can define a language over an alphabet as a set of arbitrary strings that are
considered ‘valid’, but you can also define a language using a grammar.

Definition

A Grammar is a set of rules used to define a language over an alphabet, by specifying the structure
of valid strings in said language.

To describe the grammar of a language, two sets of symbols (alphabets) are required, terminals and non-
terminals

Definition

Terminal symbols are those from which the actual strings which make up a language are derived,
like the symbols discussed previously for a manually specified language. In the case of a spoken
language, these would usually be lowercase letters, such as the latin alphabet used in English.

Definition

Non-Terminal symbols are ‘temporary’ symbols (fully disjoint from the set of terminal symbols)
used to define the grammar’s replacement rules. These must all be replaced by terminals before
a production can be considered a valid string in the language. These are usually represented by
uppercase letters, or letters from an alphabet other than that of the language.

Productions
Further to this, a grammar for the language L overΣwould typically consist of a set of productions (gram-
mar rules) which allow you to produce the set of strings which make up L.

Definition

A Production is a rule which allows you to produce a string for a language. They are typically in the
form

α → β

where α is a string of symbols from the set of terminals (Σ) and β is a string of symbols from the set
of non-terminals.

You can read these rules in several ways – α → β could be read as;

• replace α by β

• α produces β

• α rewrites as β

• α reduces to β

Hugh Baldwin
https://github.com/HughTB/cs-notes

8 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

A Formal Definition
Formally, a grammar is defined by the following properties

1. An alphabet T of terminal symbols (This is the same as the alphabet of the language defined by this
grammar)

2. An alphabetN of non-terminal symbols

3. A specific non-terminal symbol known as the start symbol, which is often S

4. A finite set of productions in the form α → β where α and β are strings over the alphabetN ∪ T

Every grammarmust have the special non-terminal symbol known as a start symbol, and it must also have
at least one production in which the left side consists of only the start symbol.

Example

Let G be a grammar defined by
• The set of terminals T = {a, b}
• A single non-terminal being the start symbol S
• The set of productions

S → Λ, S → aSb

or for shorthand,
S → Λ | aSb

To get the full set of strings which are valid for this grammar, we need to perform a derivation

Derivations
Starting from any production where the left side consists of only the start symbol, we can go through a
step by step process to generate all strings belonging to the language described by a grammar.

Example

Using the grammarG from the previous example, we could start with either of the two productions,
since they both have only the start symbol S on the left-hand side. This means that the first step of
our process would give us Λ and aSb.

In this example, the string aSb is a sentential form of the terminals {a, b} and non-terminal S. From this
point, to extend or generate any other strings, we need to perform a derivation.

Definition

If x and y are sentential forms, and α → β is a production, then to replace α by β in xαy is to Derive
a new string. This is denoted by writing

xαy ⇒ xβy

Hugh Baldwin
https://github.com/HughTB/cs-notes

9 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

Example

Going back to the grammar G again, since it contains the production S → aSb, we could take our
first step to generate the string aSb, then we can go another step further and derive aaSbb from aSb,
which means

aSb ⇒ aaSbb

Since we can use this production again and again, we could derive that

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ . . .

To represent this multi-step process, we have the following symbols to show how the derivation was con-
structed

• ⇒ derives in a single step

• ⇒+ derives in one or more steps

• ⇒∗ derives in zero or more steps

Example

Using the grammar G, we can show multiple derivations using these new symbols

S ⇒ Λ, S ⇒ aSb,∴ S ⇒∗ ab

S ⇒∗ aaabbb

S ⇒∗ aaaaaaSbbbbbb

What is L(G)?

Definition

If G is a grammar with the start symbol S and the set of terminals T , then the language generated
by G is the set

L(G) = {s | s ∈ T ∗ and S ⇒+ s}

That is to say that it’s the set of all strings containing only terminal symbols which can be derived
from the start symbol with one or more steps.

Example

With the grammar G,
L(G) = {Λ, ab, aabb, aaabbb, aaaabbbb, . . .}

Infinite Languages
Within an infinite language, there is no limit on the length of strings, and therefore also no limit on the
number of steps needed to derive a string. If the grammar of a language has n productions, then any
derivation with > n + 1 steps must use at least one production twice. Therefore, if a language is infinite,
then a production or sequence of productions must be used repeatedly to construct the derivations of the
grammar.

Hugh Baldwin
https://github.com/HughTB/cs-notes

10 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

Example

The infinite language {anb | n ≥ 0} can be described by a grammar with the production S → b | aS.
To derive the string anb, you would apply the production S → aS n times over and then finish the
derivation with the production S → b.

With the production S → aS, we can also say that “If S derives w, then it also derives aw”

Recursion and Indirect Recursion

Definition

A production is Recursive if its entire left side is contained within the right side.

Example

The production S → aSb is recursive, since the sentential form it produces contains itself.

Definition

A production is Indirectly Recursive if it is possible to derive a sentential form in two or more steps
which contains the entire left side of the production.

Example

If a grammar contains the rules S → b | aA and A → c | bS, then both productions are indirectly
recursive, since

S ⇒ aA ⇒ abS

A ⇒ bS ⇒ baA

Recursive Grammars

Definition

A grammar is Recursive if it contains either a recursive or indirectly recursive production. In order
for a grammar to be infinite, it must first be recursive.

Constructing Grammars
We’ve seen previously how to derive a language from the definition of a grammar, but we also need to be
able to construct a grammar to produce a language. It is often very difficult and sometimes impossible to
write down a grammar for a given language, and there are often multiple grammars which form the exact
same language.

Finite Languages
In the case of a finite language, it is always possible to find a grammar which produces the language. This
is because it is possible to simply make a grammar which contains a production for every string of the
language, where S → w for every string w in the language.

Hugh Baldwin
https://github.com/HughTB/cs-notes

11 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

Example

The finite language {a, b, c, abc} over the alphabet {a, b, c} can be described by the grammar

S → a|b|c|abc

Infinite Languages
However, in the case of an infinite language, there is no universal method that will always produce a valid
grammar. This means it is much harder to find a valid grammar, and often requires combining grammars.

Example

A simple example of an infinite language would be {Λ, a, aa, aaa, . . .}which we can also write in the
form {an : n ∈ N}. We can then see that one grammar which describes this language is as follows;

• The set of terminals, T = {a}
• The non-terminal start symbol, S
• The productions S → Λ, S → aS

Combining Grammars
Suppose we have two languages, L andM for which there are known grammars. There are a few simple
rules we can use to create the grammars which describe the languages L ∪M , L ·M and L∗.

To create this ‘composite’ grammar, we can describe L andM with disjoint sets of non-terminals. If we
have the start symbols of L andM as A and B respectively, i.e. L : A → . . ., M : B → . . ., we can then
combine these as productions in another grammar to create the language.

Unions
If we need to produce the union of two languages, L ∪M , we start with the two productions S → A | B,
followed by the productions which make up L andM , using A and B as their respective start symbols.

Example

If we wanted to write the grammar that produces the language

K = {Λ, a, b, aa, bb, aaa, bbb, . . . , an, bn}

we can realise thatK is the union of two different languages,

L = {an | n ∈ N}
M = {bn | n ∈ N}

and so we can write a grammar forK as
• S → A | B (Union rule)
• A → Λ | aA (Ls grammar)
• B → Λ | bB (Ms grammar)

Products
Similarly, if we need to produce the the product of two languages, L · M , we start with the production
S → AB, followed by the productions which make up L and M , using A and B as their respective start
symbols.

Hugh Baldwin
https://github.com/HughTB/cs-notes

12 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A2: Grammars

Example

If we wanted to write the grammar that produces the language

K = {Λ, a, b, aa, ab, aaa, bb, . . .}

we can realise thatK is the product of the two languages,

L = {an | n ∈ N}
M = {bn | n ∈ N}

and so we can write a grammar forK as
• S → AB (Product rule)
• A → Λ | aA (Ls grammar)
• B → Λ | bB (Ms grammar)

Closures
And finally, if we need to produce the closure of a language, L∗, we start with the production S → AS | Λ
followed by the productions which make up L, using A as its start symbol.

Example

If we wanted to write the grammar that produces the language L∗ where

L = {aa, bb}

and so
L∗ = {Λ, aa, bb, aaaa, aabb, bbbb, bbaa, . . .}

we can write the grammar for L∗ as
• S → AS | Λ (Closure rule)
• A → aa | bb (Ls grammar)

Equivalent Grammars
Any given language could havemany different grammars which produce the exact same thing. Thismeans
that grammars are not unique. We can also use this to simplify grammars.

Example

Take the grammar from the previous example,

S → AS | Λ
A → aa | bb

If we replaceA in S with the right side ofA, aa, we get the production S → aaS. We can then do the
samewith the other production to get S → bbS. Therefore, we canwrite this grammar in a simplified
form as

S → aaS | bbS | Λ

Hugh Baldwin
https://github.com/HughTB/cs-notes

13 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A3: Regular Languages

Lecture - A3: Regular Languages
13:00 10/10/24 Janka Chlebikova

A regular language is a simple sort of language that meets a few basic requirements. They are often used
for pattern matching and in lexical analysers.

Definition

There are several ways of describing a regular language
• Languages inductively formed by combining simple languages
• Languages described by a regular expression
• Languages produced by a grammar with a special and restricted form
• Languages that can be accepted by a finite automata

Inductively Formed Regular Languages
We start with a very simple language or set thereof and build more complex ones by combining them in
particular ways–

• Basis - ∅, {Λ} and {a} are all regular languages for all a ∈ Σ

• Induction - If L andM are regular languages, then L ∪M , L ·M and L∗ are also regular languages

The basis of this definition gives us the following four regular languages over the alphabet Σ = {a, b}:

∅, {Λ}, {a}, {b}

All regular languages over Σ can be constructed by combining these four languages in various ways by
recursively applying the union, product and closure operations.

Example

Is the language {a, ab} regular?
Yes, since it can be constructed from the four basic regular languages using a product and union
operation–

{a, ab} = {a} · {Λ, b}
= {a} · ({Λ} ∪ {b})

We can also see from this that it is possible to construct any finite language in this way, and therefore all
finite languages are regular. There are also many infinite languages which are regular.

Regular Expressions
If you wanted to find an algorithmwhich can determine if a string belongs to a particular regular language,
you would most likely use a regular expression

Hugh Baldwin
https://github.com/HughTB/cs-notes

14 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A3: Regular Languages

Definition

A Regular Expression is basically a short-hand way of showing how a regular language is con-
structed from a base set of regular languages.
For each regular expression E, there is a regular language L(E)

Like the regular languages discussed previously, regular expressions can be manipulated inductively to
form new regular expressions.

• Basis - Λ, ∅ and a are regular expressions for all a ∈ Σ

• Induction - If R and E are also regular expressions, then (R), R + E, R · E and R∗ are also regular
expressions

Example

A few of the regular expressions over the alphabet Σ = {a, b} are

Λ, ∅, a, b
Λ + b, b∗, a+ (b · a)

(a+ b) · a, a · b∗, a∗ · b∗

So that we don’t have to include lots of parentheses, the operations have the following hierarchy–

• ∗ (Highest)

• ·

• + (Lowest)

Example

The regular expression
a+ b · a∗

is the same as
(a+ (b · (a∗)))

We can also juxtapose languages rather than using · where there is only one possible interpretation

Example

The regular expression
a+ b · a∗

is the same as
a+ ba∗

Operators
In regular expressions, there are two binary operations (+ and ·), and one unary operation (∗). These are
closely related to the union, product, and closure operations over corresponding languages.

Hugh Baldwin
https://github.com/HughTB/cs-notes

15 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A3: Regular Languages

Example

The regular expression
a+ bc∗

is more-or-less shorthand for the regular language

{a} ∪ ({b} · ({c}∗))

From Expressions to Languages
There is a very simple substitution method to find the language described by a regular expression.

Example

Find the language described by the regular expression a+ bc∗–

L(a+ bc∗) = L(a) ∪ L(bc∗)

= L(a) ∪ (L(b) · L(c∗))
= L(a) ∪ (L(b) · L(c)∗)
= {a} ∪ ({b} · {c}∗)
= {a} ∪ ({b} · {Λ, c, c2, c3, . . .})
= {a} ∪ {b, bc, bc2, bc3, . . .}
= {a, b, bc, bc2, bc3, . . .}

This approach can also be used to prove that a given language is regular.

Many infinite languages can easily be proven to be regular, by finding a regular expression that describes
it. Not all infinite languages are regular however.

Regular expressions are also not necessarily unique, as theymay represent the same language as another
regular expression, such as a + b and b + a being different regular expressions, but both represent the
language {a, b}

Definition

Regular expressions are said to be Equal if their languages are the same. If R and E are regular
expressions where L(R) = L(E), then they are equal and can be written as R = E.

Properties of Regular Expressions
There are many general equalities for regular expressions, which hold for any regular expressions R, E,
and F , and can be proven by using the basic properties of languages and sets.

• Additive Properties

R+ E = E +R

R+ ∅ = ∅+R = R

R+R = R

(R+ E) + F = R+ (E + F)

Hugh Baldwin
https://github.com/HughTB/cs-notes

16 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A3: Regular Languages

• Product Properties

R∅ = ∅R = ∅
RΛ = ΛR = R

(RE)F = R(EF)

• Distributive Properties

R(E + F) = RE +RF

(R+ E)F = RF + EF

• Closure Properties

∅∗ = Λ∗ = Λ

R∗ = R∗R∗ = (R∗)∗ = R+R∗

R∗ = Λ+RR∗ = (Λ +R)R∗

RR∗ = R∗R

R(ER)∗ = (RE)∗R

(R+ E)∗ = (R∗E∗)∗ = (R∗ + E∗)∗ = R∗(ER∗)∗

Regular Grammars
There are several ways to characterize grammars which describe regular languages.

Definition

A Regular Grammar is one where all of the productions take one of the following forms

B → Λ

B → w

B → A

B → wA

Where A and B are non-terminals and w is a non-empty string of terminals

Only one non-terminal can appear on the right hand side of any production. Non-terminalsmust appear on
the right end of the right hand side. Therefore the productions A → aBc and S → TU are not productions
in a regular grammar, but A → abcA is.

For any regular language, we can find a regular grammar which describes it, but there may also be non-
regular grammars which produce it.

Hugh Baldwin
https://github.com/HughTB/cs-notes

17 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

Lecture - A4: Finite Automata
13:00 10/10/24 Janka Chlebikova

There are several different ‘models of computation’, such as finite automata, push-down automata and
turing machines. They are all abstract models of computers which are capable of different things. They
all have an input tape with a single string of an infinite length and can accept or reject the input string.

Finite Automata
Finite automata are the most basic models of a computer.

Definition

A Finite Automaton has three components–
• An input tape, which contains an input string over the alphabet Σ
• A head, which reads the input string one symbol at a time
• Memory, which is realised as a finite set Q of states, of which the automaton can only be in
one at any time

The ‘program’ of the automaton defines how the read symbol changes the current state.

To better understand an automaton, they are typically represented as a transition graph, which is a form
of directed graph.

Example

s2s1

s3 s4

a

b

b

a
a

b

a,b

This is a finite automata which takes the alphabet Σ = {a, b}, and accepts strings such as abba,
baab, etc.

Each automaton has one initial state, denoted by the arrow entering s1, and at least one final or accepting
state, denoted by the double circle such as s4. Once the whole input string is read into the automaton, if
the current state is a final or accepting state, then the string is accepted. Otherwise, the string is rejected.
The language of an automaton is the set of strings it accepts.

Hugh Baldwin
https://github.com/HughTB/cs-notes

18 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

A Formal Definition

Definition

A finite automaton is defined by
• A set of states,Q
• A start state, s ∈ Q
• A set of accepting states,Qa ⊂ Q
• A set of transition functions T : Q× Σ → Q

Example

A very simple finite automaton could be defined by

Q = {0, 1, 2}
s = 0

Qa = {1}
T (0, a) = 1, T (0, b) = 2

T (1, a) = T (1, b) = 1

T (2, a) = T (2, b) = 2

And as a transition graph,

0 1

2

a

b

a,b

a,b

State Transition Functions
A state transition function, T : Q× Σ → Q, of the form

0 1
a

is represented by T (0, a) = 1, where 0, 1 ∈ Q and a ∈ Σ.

Deterministic Finite Automata
In the previous examples, there is always exactly one transition function for every state and symbol – every
node has exactly one edge for each possible input symbol. Such automata are known as deterministic
finite automata. That means that for any input string, we always know which unique state we are in at any
symbol in the string.

Hugh Baldwin
https://github.com/HughTB/cs-notes

19 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

Definition

A DFA accepts a string w over Σ∗ if and only if there is a path from the initial state to an accepting
state, such that w is the concatenation of the labels on the edges of the path. Otherwise, the DFA
rejects w. For a FA to be deterministic, there must also be exactly one edge from each state for
each symbol in Σ.
The set of all strings over Σ accepted by the DFAM is known as the language ofM , and is repre-
sented by L(M).

It has been proven that “the class of regular languages is exactly the same as the class of languages ac-
cepted by DFAs”. This means that for any given regular language, we can find at least one DFA which
recognises it, and vice versa.

Non-Deterministic Finite Automata
With a DFA, you always know exactly which state it will be in after a given input string. This is not the
case with an NFA, since in any given state there may be zero or more transitions for each symbol in the
alphabet. Since more than one transition is possible for each state, it is impossible to know which state it
will be in given an input string. If the NFA reaches an accepting state after reading the string, it is accepted.
Otherwise it is rejected. Since there could be multiple paths for any given strings, as long as one or more
path reaches an accepting state, it is accepted. Also, if there are no edges that can be traversed from a
state using the current input symbol, the input string is immediately rejected.

Additionally, an edge may be labelled with Λ, which means that one can make the transition without con-
suming any symbols from the input string.

The non-determinism of these FA also means that they are impossible to run on a traditional computer, at
least without using tricks that make them much less efficient. With the advent of quantum computers, it
may become possible to use NFAs for much more efficient parsing and pattern matching.

Example

0 1

2

3
a b

Λ

a

a

This is an NFA which corresponds to the regular expression ab+ a∗a.

Sinceweare able tohavemultiple edgeswith the samesymbol fromanode,wecould alsouse this different
NFA which recognises the language of the same regular expression.

Hugh Baldwin
https://github.com/HughTB/cs-notes

20 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

Example

0 1 2

3

a

a

b

a

NFA Transition Functions
Since NFAs are non-deterministic, their transition functions instead take the form T : Q×Σ → P (Q). This
allows for the result of any given transition function to be a set of states which could be transitioned to.

Example

Taking the first example of an NFA, the transition function might look as below–

T : Q× Σ → P (Q)

T (0, a) = {1}, T (0,Λ) = {2}
T (1, b) = {3}

T (2, a) = {2, 3}

and for the second example–

T : Q× Σ → P (Q)

T (0, a) = {1, 3}
T (1, b) = {2}
T (3, a) = {3}

DFAs vs NFAs
On the surface it may seem like there aren’t many differences between NFAs and DFAs, and in fact, DFAs
are a subset of NFAs. It has also been proven that “the class of languages accepted by NFAs is also exactly
the class of regular languages”, just as for DFAs. This also means that for every NFA there must be an
equivalent DFA, or at least one that accepts the same language.

Generally, NFAs are easier to construct for any given regular expression, and tend to be more simple, with
fewer states and transitions. However, DFAs are much easier to execute, especially on the deterministic
computers we currently use. Since they recognise the same set of languages, it is always possible to find
equivalents, though the DFA will usually be much larger and more complex.

Finding an Equivalent DFA
Generally, the DFA will have more states than the equivalent NFA. If the DFA has n states, the DFA may
have asmany as 2n states. To actually do this conversion, you can follow the algorithm below (shown here
converting the NFA in the figure below)

Hugh Baldwin
https://github.com/HughTB/cs-notes

21 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

s0 s1 s2

a, b

a b

Figure 5.1: The NFA which accepts the language for the regular expression (a+ b)∗ab

Step 1 – Begin with the NFA start state. If it’s connected to any other states by Λ, make the initial state of
the DFA a set containing the NFA’s initial state and those others.

{s0}

Figure 5.2: The resulting DFA after step 1

Step 2 – For each symbol, determine the set of possible NFA states youmay be in after reading it. This set
becomes the label of the state, and is connected to the previous state by that symbol. Only create a new
state if one with that label does not already exist.

{s0} {s0, s1}

b

a

Figure 5.3: The resulting DFA after step 2

Step 3 – Repeat Step 2 for each new DFA state, until the system is closed. DFA accepting states are those
that include one or more NFA accepting states. If there is no transition for a symbol in the NFA, create a
new state in the DFA with the label ∅, and add loops for all symbols (known as a non-final trap state).

{s0} {s0, s1} {s0, s2}

b

a

a

b

a

b

Figure 5.4: The final DFA

Hugh Baldwin
https://github.com/HughTB/cs-notes

22 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A4: Finite Automata

{s0} {s0, s1} {s0, s2}

∅

b

a

a

b

a

b

c
c

c

a, b, c

Figure 5.5: The same DFA, assuming that the language was {a, b, c} rather than {a, b}

Hugh Baldwin
https://github.com/HughTB/cs-notes

23 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A5: Finite Automata & Regular Languages

Lecture -A5: FiniteAutomata&Regular Lan-
guages

13:00 17/10/24 Janka Chlebikova

Automata and Regular Languages
How can we prove that the set of languages accepted by automata is exactly the set of regular languages?
Well it takes multiple steps.

Step 1– We need to show that for any regular expression, we can find an NFA that recognises it, thus
proving

L(regular expressions) ⊆ L(NFA)

Step 2– Then we take a finite automaton and find a regular expression which describes the language of
the automaton, thus proving that

L(NFA) ⊆ L(regular expressions)

Step 3– We then combine the previous results to get that

L(NFA) = L(regular expressions)

Regular Expressions to Finite Automata
Given any regular expression, we need to be able to construct a finite automaton (either NFA or DFA)which
recognises its language. Given that all regular expressions are built up using union, product and closure
operations, we can use a set of rules to construct an FA for a given regular expression.

Rule 0– Start the algorithm with a simple FA that has a start state, a single accepting state and an edge
labelled with the given regular expression.

Rule 1– If an edge is labelled with ∅, erase the edge.

Rule 2– Transform any edge of the form R+ S into two edges, labelled R and S.

Rule 3– Transform any edge of the formR ·S into a new intermediary state, with an edge labelledR going
into it from the previous state, and an edge labelled S going into the next state.

Rule 4– Transform any edge of the form R∗ into a new intermediary state with a looping edge labelled R,
and two edges labelled Λ, one entering and one exiting the new state.

You must apply these rules until no more of the edges can be broken up any further using the rules.

Hugh Baldwin
https://github.com/HughTB/cs-notes

24 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A5: Finite Automata & Regular Languages

Example

For the regular expression a∗ + ab, we would follow the steps below–
Start with rule 0–

s f
a∗ + ab

Apply rule 2–

s f
a∗

ab

Apply rule 4 to a∗–

s 1 f
Λ

ab

a

Λ

Apply rule 3 to ab–

s 1

2

f
Λ

a

a

Λ

b

Thus, we have proven that we can produce a finite automata for any regular expression, and given a set of
rules to do so.

Finite Automata to Regular Expressions
Now, to do the same thing in reverse, we need a new algorithm, as follows–

Step 1– Create a new start state s, and draw an edge labelled Λ to the original start state.

Step 2– Create a new accepting state f , and draw edges labelled Λ from all original accepting states.

Step 3– For each pair of states i and j with more than one edge from i to j, replace all edges with a single
edge labelled with the regular expression formed by the sum of labels on each edge from i to j.

Step 4– Step-by-step eliminate any states, changing the labels on corresponding edges until the only
remaining states are s and f . When deleting a state, you must replace any possible transitions with a
regular expression which matches all of the possible transitions.

You should end up with an FA with only two states, and a single edge connecting them which is labelled
with the desired regular expression.

Hugh Baldwin
https://github.com/HughTB/cs-notes

25 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A5: Finite Automata & Regular Languages

Example

Initial DFA–

0 1

2

a

b

a, b

a, b

Steps 1 and 2: add new initial and final states–

s 0 1

2

f
Λ a

b

a, b

Λ

a, b

Apply step 3–

s 0 1

2

f
Λ a

b

a+ b

Λ

a+ b

Hugh Baldwin
https://github.com/HughTB/cs-notes

26 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A5: Finite Automata & Regular Languages

Example

We can then eliminate state 2, since there is no way for a string to be accepted from it–

s 0 1 f
Λ a

a+ b

Λ

Then we can start to eliminate states to get our final regular expression–

s 1 f
a

a+ b

Λ

s f
a(a+ b)∗

And this then leaves us with the final regular expression a(a+ b)∗.

And now, we have proven that we can transform any regular expression into an NFA, and vice versa, and
that we can transform any NFA into a DFA, and vice versa.

regular expressions ⇔ NFA ⇔ DFA

Simplifying DFAs
A lot of the time, we will end up with a complicated DFA, with far more states than is absolutely necessary.
To get a simplified DFA, we need to transform it into a unique DFA with the minimum number of states
which recognises the same language.

We can find this DFA in two parts– Finding all pairs of equivalent states, and combining the equivalent
states into a single state, with modified transition functions.

Equivalent States
We can say that two states s and t are equivalent if for all possible strings w left to consume (including Λ),
the DFAwill finish in the same type of state (i.e. accepting or non-accepting) after consumingw. Therefore,
once you arrive at s or t, the same string will always produce the same result (accepting or rejecting the
string).

Two states are not equivalent if there exists a string w such that, after consuming w, we would end up
accepting the string if we started from s and rejecting it if we started from t, or vice versa.

Hugh Baldwin
https://github.com/HughTB/cs-notes

27 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A6: Beyond Regular Languages

Lecture - A6: Beyond Regular Languages
13:00 17/10/24 Janka Chlebikova

Non-deterministic Finite Automata to Regular Grammars
Every NFA can be converted into a corresponding regular grammar. Each state of the NFA is associated
with a non-terminal symbol of the grammar, and the initial state is associated with the start symbol. Each
transition is associated with a grammar production, and every final state has the additional production
which produces Λ.

Example

For the NFA–

0 1 2

3

a

b

a

a

–we can apply the rules defined above to get the following productions, supposing thatS = 0,A = 1,
B = 2 and C = 3

S → aA | aC
A → bB

B → Λ

C → aC | Λ

This may not be the simplest set of productions, but it does work.

Testing for Regular Languages
Given a language, we need to be able to determine if it is regular. This would also allow us to prove that a
given language cannot be recognised by any finite automaton.

One possible method is by using the pumping lemma, which applies for infinite languages. Since all finite
languages are regular, this is enough to determine if a language is regular or not.

If the input string is long enough (e.g. greater than the number of states in the minimum state DFA for
the language), then there must be at least one state Q which is visited more than once. Therefore, there
must be at least one closed loop, which begins and ends at the state Q, and a particular string y, which
corresponds to this loop.

We can represent this situation as the FA–

Hugh Baldwin
https://github.com/HughTB/cs-notes

28 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A6: Beyond Regular Languages

Q
x z

y

Where each dotted edge represents a path that may contain other states and transitions of the DFA.

• x is a string of symbols which the automaton consumes to transition from the start state, to get to
the stateQ

• y is the string of symbols to transition around the closed loop

• z is the string of symbols to transition fromQ to an accepting state

Thus,weknow that the stringxyz is accepted, but also that theDFAmust accept the stringsxy, xyz, xyyz, . . . , xykz,
and that the central string y is ‘pumped’.

Formally, the pumping lemma is defined as follows

Definition

Let L be an infinite regular language accepted by a DFA withm states. Then any string w in L with
at leastm symbols can be decomposed as w = xyz with |xy| ≤ m and |y| ≥ 1 such that

wi = xyiz

is also in L for all i = 0, 1, 2, 3, . . .

This is necessary, but not sufficient for a language to be regular. If a language does not satisfy the pumping
lemma, then it cannot be regular. But a language that satisfies the pumping lemma may not be regular.
Therefore, you can use the lemma to prove that a language is not regular, but not that it is regular.

Hugh Baldwin
https://github.com/HughTB/cs-notes

29 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A7: Pushdown Automata

Lecture - A7: Pushdown Automata
13:00 24/10/24 Janka Chlebikova

There are many context-free languages that cannot be recognised by a finite automaton, especially non-
regular languages. This is because they typically require an infinite memory to be recognised, such as the
language {anbn|n ≥ 0}. A more powerful model of computing is known as Non-deterministic Pushdown
Automata, or NDPA.

Non-Deterministic Pushdown Automata
AnNDPA is like a finite automata, except that they also havememory in the form of a stack, where they can
store an infinite amount of information. They aremadeupof the input tape, an infinite sequenceof symbols
from the input alphabet, a finite control automaton which is similar to an NFA, and the memory. Since the
memory is modelled as a stack, it works in a Last In, First Out way, and there are 3 stack operations which
can be performed at each step.

• pop– Reads the top symbol and removes it from the stack

• push– Writes a new symbol on to the top of the stack

• nop– No operation, has no effect on the stack

The symbols contained in the stack are different to the alphabet of the language the NDPA recognises. The
initial state of the automaton is that the stack only contains the initial stack symbol, and that the control
automaton is in it’s initial state.

Transition Functions
At each step, the current state, input symbol and symbol at the top of the stack determine the transition
to the next state. Each transition must change the state, may read a symbol from and advance the input
tape, and change the stack using one of the above stack operations.

Each transition function has three inputs

• The current state, p

• The input character, a or Λ

• The stack character, A

and two outputs

• The new state

• A stack operation

Hugh Baldwin
https://github.com/HughTB/cs-notes

30 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A7: Pushdown Automata

NDPA Formally

Definition

An NDPA can be formally described by
• A finite setQ of states, the initial state and the set of accepting states
• A finite set Σ of symbols making up the input alphabet
• A finite set Γ of symbols making up the stack alphabet, and the initial stack symbol, often $
• A finite set of transition instructions, or a transition function T of the form T : Q×Σ∪{Λ}×Γ →
Γ∗ ×Q

Example

The transition

p q
a,A | push(B)

can also be written as the function

T (p, a,A) = (push(B), q)

or as the transition instruction
(p, a,A, push(B), q)

Instantaneous Descriptions of NDPAs
During computation, you need to be able to describe the NDPA after any given set of inputs. Since it also
modifies the stack at each step, the entire stack needs to be included in the description. Formally, this is
known as the instantaneous description of an NDPA.

Definition

The instantaneous description consists of
• The current state
• The unconsumed input characters
• The contents of the stack

and is written as

(current state, unconsumed input, stack contents)

In this case, the top of the stack is on the left, and bottom on the right.

Example

(0, abba, Y Z$)

Accepted Languages
A string is accepted by an NDPA if there is some path from the initial state to an accepting state which
consumes the entire input string. Otherwise, the string is rejected by the NPDA. The language is then the
set of all strings that it accepts.

Specifically, an input string is rejected if it finishes reading the string before reaching an accepting state, if
the current state has no transition for the current input or stack symbol, or finally if it attempts to pop an
empty stack.

Hugh Baldwin
https://github.com/HughTB/cs-notes

31 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A7: Pushdown Automata

Example

Ifwewanted tobuild anNDPA that recognises the language {anbn|n ≥ 0}, we could use the following
plan.

• Read the string, and for each a that’s read, push Y onto the stack
• Once the first b is read, change state and start removing one Y from the stack for each b read
• If the input string ends and the stack has just emptied, the string is accepted
• Otherwise, the string should be rejected

We can create this NDPA as the automaton with
• Q = {0, 1, 2} where 0 is the initial state, and 2 accepting
• Σ = {a, b}
• Γ = {Y, $}

and drawn as

0 1 2

a, Y | push(Y); a, $ | push(Y)

b, Y | pop

Λ, $ | nop

b, Y | pop

Λ, $ | nop

NDPAs and Context-Free Languages
The class of all languages accepted by NDPAs is exactly the same as the class of context-free languages.
To prove this, we need to show that

1. With any given NDPA, we can find a context-free grammar which produces the same language

2. With any given context-free language,we can find an NDPA which accepts the given language

Example

Show that the language containing all strings over {a, b} with exactly the same number of as and bs
is context-free. Using the theorem, all we need to do is find anNDPAwhich recognises this language.

Since we need to keep track of the number of as and bs, we can change the stack accordingly. If
we’ve seen more as, add anX, and if we’ve seen more bs, add a Y .

We can then represent this NDPA as
• Q = {0, 1} where 0 is the initial state, and 1 accepting
• Σ = {a, b}
• Γ = {X,Y, $}

with the transition diagram

0 1

a, $ | push(X); a,X | push(X); a, Y | pop; b, $ | push(Y); b, Y | push(Y); b,X | pop

Λ, $| nop

Determinism
Similarly to finite automata, push-down automata can be either deterministic or non-deterministic. How-
ever, a non- deterministic push-down automata isn’t very useful, since it can never make a choice at each
state. Unlike NFAs and DFAs, deterministic push-down automata cannot recognise the entire family of

Hugh Baldwin
https://github.com/HughTB/cs-notes

32 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A7: Pushdown Automata

context-free languages.

Hugh Baldwin
https://github.com/HughTB/cs-notes

33 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A8: Applications of Context-Free Grammars

Lecture - A8: Applications of Context-Free
Grammars

13:00 24/10/24 Janka Chlebikova

The original purpose of context-free languages was to describe the grammar of English, in terms of it’s
block structure, built up recursively from smaller phrases. However, since phrases with the exact same
structure can have one of several meanings, we need a way to showwhich of the possible derivations was
used to produce it. This can be shown using a parse (or derivation) tree, which starts with the initial symbol
and works down until all of the leaves are terminal symbols (usually words in a spoken language).

• The start symbol of the grammar becomes the root of the tree

• For each productionX → Y1 . . . Yn, add Y1 . . . Yn as children of the nodeX

• Every leaf must end up as a terminal, and any internal nodes must be non-terminals

If there are multiple possible parse trees for a given string in a language, how do we know which one is
correct? Well, all of themare. Thismeans that for any stringwith a non-unique parse tree, there are several
correct meanings.

Ambiguous Grammars
If a string in a grammar has a non-unique parse tree, then it is known as ambiguous. This is because
there would be no way for a compiler or other computer program to know which of the options is correct.
As a human, you can usually figure it out based upon other context, but that is not a luxury afforded to
computers.

Conversely, if each string of a language has only one parse tree (or alternatively, if there is only one left-
most (or right-most) derivation for each string), then the language is unambiguous.

Since there are no general techniques for handling ambiguity, it is impossible to convert an ambiguous
grammar into an unambiguous one. In some cases, a grammar can be modified such that it produces the
same language, but is unambiguous, however this can only be done on a case-by-case basis. An example
of this is adding parenthesis inmathematical expressions tomake sure that the correct order of operations
is used.

Parsing
Parsing is one of the main steps of a compiler, and is a process in which

• It is determined whether the input string has correct syntax

• A parse tree is built, which represents the internal structure of a string, and how it was derived from
the grammar

Parsing can be done in one of two ways– top-down parsing and bottom-up parsing.

Top-down parsing constructs the parse tree by starting from the grammar’s start symbol, and replacing
non-terminals, working it’s way towards the string. If, after following every logical set of non-terminals, it
is not possible to produce the input string, then the string cannot be parsed and it is not in the language of
the parser.

Hugh Baldwin
https://github.com/HughTB/cs-notes

34 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A8: Applications of Context-Free Grammars

Bottom-up parsing starts with the string, and works backward to get to the start symbol, replacing sets of
terminals with a grammar rule which produces them. Once again, if all combinations fail then the string
cannot be parsed and is not in the language of the parser.

When working with a top-down parser, there is often a need to backtrack through the parse tree, if it gets
stuck at some point and cannot progress any further towards the final string, which means that the whole
state at each step needs to be stored until the parse is completed. Some grammars are backtrack-free,
and it is sometimes possible to design a grammar purposefully like that.

When bottom-up parsing, the internal state also needs to be stored, but there is usually less backtracking
required, depending on the grammar. They can also handle a larger class of grammars than top-down
parsers.

Computer Languages
Since a parser is one of the most important parts of a compiler, it is desirable to design the programming
language in such a way that it is easy to construct a parser for it. This means that a lot of programming
languages take the form of a context-free grammar, but more specifically there are categories of CFG that
are easier for either a top-down or bottom-up parser to parse.

The best candidates for these easier languages are either LL(k)- or LR(k)-grammars, for any k ≥ 0.

• LL(k)-grammars are based on LL(k)-parsers, and are better for top-down parsing

• LR(k)-grammars are based on LR(k)-parsers, and are better for bottom-up parsing

LL(k)-grammars
What does LL(k) actually mean?

• L– The input string is parsed from left-to-right

• L– Only left-most derivations are considered at each step

• k– The number of look-ahead symbols needed to decide which derivation to use

Example

The grammar S → aSc|b for the language LL(1) = {anbcn, n ≥ 0} only requires one symbol of look-
ahead, since it is always possible to know which production needs to be used to continue parsing
any given string.

Example

The grammar S → AB,A → aA|a,B → bB|c requires two symbols of look-ahead, since there are
multiple possible productions for any given symbol. If we had the input symbol a, we could have
used either of the two productions of A.

There are some languages that cannot be represented by an LL(k) grammar, such as if any of the produc-
tions start with a non-terminal, since youwould need to know the length of the full string. Thatmeans that
it is impossible to do a partial derivation, knowing only how the string starts.

All LL(k) grammars are unambiguous, and are a subset of deterministic context-free languages. LL(1)
languages are very popular, as they are much easier to parse than other languages. Some languages how-
ever are too complex to be described by an LL(1) grammar, such as the C language, however these can
be parsed using higher order grammars.

Hugh Baldwin
https://github.com/HughTB/cs-notes

35 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A8: Applications of Context-Free Grammars

LR(k)-grammars
Languages based upon LR(k) grammars are parsed bottom up, scanning the string from left-to-right, as
with LL(k) grammars, but produce a right-most derivation in reverse.

• L– The input string is parsed from left-to-right

• R– Only right-most derivations are considered at each step

• k– The number of look-ahead symbols needed to parse the grammar

Donald Knuth proved that all LR(1) languages are exactly LR(k) languages, which are exactly determin-
istic context- free languages (DCFL). DCFGs are a proper subset of the context-free grammars, and can be
recognised by DPDAs. They are also always unambiguous.

They are of particular interest since they can be parsed in linear time, and a parser can be automatically
generated from the grammar using a parser generator.

To derive anLR(k) grammar, you start from the bottomup, essentially scanning from left-to-right, until you
find the first right-hand side of a production. You then replace the symbols in the string with the left-hand
side of the production, and continue the process on the new string. This continues until you eventually
cannot find anymore productions (in which case, the string does not belong to the language), or you reach
the start symbol. You can then invert the order of derivations to find the original derivation of the string.

Hugh Baldwin
https://github.com/HughTB/cs-notes

36 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A9: Turing Machines

Lecture - A9: Turing Machines
13:00 07/11/24 Janka Chlebikova

The main difference between finite and pushdown automata is that PDA have an infinite stack of memory.
This does make them more powerful than FA, but since they still can only move the reading head to the
right at each step, there is a class of languages they cannot parse. For example, NDPAs can parse the
language {anbn, n ≥ 0}, but not {anbncn, n ≥ 0}.

If the main differentiating factor is the type of storage available, then we can say an automaton with no
storage is an FA, if the storage is a stack, it’s a PDA, but what if we had 2 or 3 stacks? They would certainly
be a more powerful form of automaton, and theoretically able to parse more complex languages.

Turing Machines
Turing machines are the most powerful class of automaton, since they are essentially the same model of
computing as modern computers. The main improvement over PDAs is that the memory is modelled as
an infinite ‘tape’ of data, which can be read from and written to, but all of it is accessible at once. The tape
‘head’ can move left or right, or not change position on each read or write operation.

The tape is divided into cells, with an infinite number in each direction from the starting cell. Each cell
contains either a symbol from the alphabet, or a blank symbol. Since this is based more in reality than
previous automatons, the tape must have a finite number of non-blank symbols written on it. The head
can only ever read or write to the current cell.

Based upon the current state and symbol in the current cell, the machine may

• Change the state

• Move the head in either direction (or not at all)

• Rewrite the current symbol, or leave it unchanged

Again, since these are more based in reality, the ‘standard’ type of Turing machine is deterministic, since
it would have to be to exist in the physical world.

Instructions
Each movement step is represented by a letter– move to the left is L, move to the right isR, and stay still/
do nothing is S.

Hugh Baldwin
https://github.com/HughTB/cs-notes

37 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A9: Turing Machines

Definition

Each instruction for a Turing machine consists of five parts–
• The current state of the machine (over the set of all states,Q)
• The symbol read from the current cell of the tape (from Γ, or the blank symbol)
• A symbol to write to the tape (from Γ, or the blank symbol)
• The state to transition to (fromQ)
• The direction for the tape head to move

Each instruction is of the form

T : Q× Γ → Γ×Q× {L,R, S}

And the instruction can be written as an instruction such as

(i, a, b, L, j)

Or in a diagram in the form
a

b, L

Values on the Tape
An input string is represented by placing the letters from the string into adjacent cells on the tape. All other
cells in the tape initially contain the blank symbol, which is denoted by □. Typically, the head starts over
the leftmost cell of the input string (the leftmost non-blank cell).

Starting and Stopping
As with FAs and PDAs, there must be a single start state, which must be specified. In the case of a Turing
machine, there is also usually only one final state, usually known as ‘Halt’. A Turingmachine will halt when
it either enters the halt state, or enters a state from which there is no valid move.

Recognising Languages
A Turing machine T recognises a string over Σ if and only when

• T starts in the initial position, with the string x written on the tape

• T halts in a final state

T is said to recognise the languageA if x is recognised by T , if and only if x belongs toA. A string is rejected
by T if it never halts, or it halts in a state which is not final.

Instantaneous Description
To describe a Turing machine at any instant in time, we need to know what’s on the tape, where the tape
head is located, and what state the control automaton is in. We can represent this as follows:

State i : □aabab□

where the current position of the tape head is in bold.

Add example 2 here

Hugh Baldwin
https://github.com/HughTB/cs-notes

38 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A10: Computing with TMs & Alternative Definitions

Lecture - A10: Computing with TMs & Alter-
native Definitions

13:00 07/11/24 Janka Chlebikova

We’ve shown so far that a Turing machine is able to take an input string, and return a boolean value, rep-
resenting if the string was accepted by the language of the machine. But they can also do much more,
such as transform a string, and write the result onto the tape. These machines are sometimes known as
transducers.

Functions with Turing Machines
The input of the function can be the input string x, and the output can be the string y which is written to
the tape at the point themachine halts. We can define a partial function T (x) = y for all strings x for which
the machine halts. We can also represent non-negative integers in other ways, such as in unary or binary.

Machine for adding 2 example
Non-Deterministic Turing Machines
A non-deterministic Turing machines is similar to a deterministic one, but with a finite number of choices
at each combination of current state and symbol. A non-deterministic TM accepts the input string if there
is at least one computation which reaches the halt state for the input.

Surprisingly, there is no difference in the set of languages which deterministic and non-deterministic Tur-
ing machines can accept. This means that they accept the same family of languages, which are of the
unrestricted grammar also known as recursive enumerable languages.

Hugh Baldwin
https://github.com/HughTB/cs-notes

39 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A11: More About Turing Machines

Lecture - A11: More About Turing Machines
13:00 14/11/24 Janka Chlebikova

Some Turing Machines have inputs for which they will never halt. There are 3 possible outcomes for a
given string– halting, finishing in a non-halted state, or not halting at all. Of these, only if the TM halts
does it accept the input strings. A TM that never halts for any input string can be called a ‘dancing’ Turing
Machine.

Recursive and Recursive Enumerable Languages

Definition

A language L is recursive if L is the set of strings accepted by some TM which halts for every given
input.
A language L is recursively enumerable if L is the set of strings accepted by some TM.

We can then say that if L is a recursive language, then

• If w ∈ L then a TM halts in a final state

• If w /∈ L then a TM halts in a non-final state

if L is instead a recursive enumerable language, then

• If w ∈ L then a TM halts in a final state

• If w /∈ L then a TM halts in a non-final state or loops forever

Every recursive language is therefore also recursive enumerable, but not the other way. There are plenty
of Languages which are not recursive enumerable, and as such cannot be described by a grammar. Every
regular language is recursive, as there must be a DFA to represent it and a DFA must always halt.

The Final Chomsky Hierarchy

add info from slide 11
The Universal Turing Machine
The Universal Turing Machine (UTM) is a turing machine that can perform the job of any other turing ma-
chine. Given an arbitrary TMM and an input w, then U simulates the operations ofM on w.

• U must halt on an input if and only ifM halts

• IfM accepts a string, then U must accept it

• IfM rejects a string, then U must reject it

We can imagine this UTM as a TM with three tapes, where

• Tape 1 corresponds toM ’s tape

• Tape 2 containsM ’s program, which U executes

• Tape 3 contains the encoding of the stateM is in at any point during the simulation

Hugh Baldwin
https://github.com/HughTB/cs-notes

40 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - A11: More About Turing Machines

A UTM acts as a general-purpose computer, and can store and execute any arbitrary program from it’s
tapes.

Hugh Baldwin
https://github.com/HughTB/cs-notes

41 of 61 M21276

https://github.com/HughTB/cs-notes

Part II

Part B

Hugh Baldwin
https://github.com/HughTB/cs-notes

42 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B1: Computability and Equivalent Models

Lecture - B1: Computability and Equivalent
Models

13:00 21/11/24 Janka Chlebikova

Computability
Something is computable if– there is some computation which computes it, and if it can be described by
an algorithm. Therefore, we can say that a computation is the execution of an algorithm.

Models of Computation
There are many different models of computation, some of which are more ‘powerful’ than others. There
are several models which are all equivalent, and the most powerful models. Anything that is intuitively
computable can be computed by a Turing machine (Church-Turing Thesis).

This means that no one has invented a computational model more powerful than a Turing machine, but
there are several other models which are equivalent to a Turing machine.

Simple Programming Language
The simple language is a small imperative language introduced by Stepherdson and Sturgis in 1963. it
has the same power as a Turing machine, so they can solve the same problems as each other.

Informal Description:

• Variables which take the values in the set of N natural numbers

• While statement of the form ‘while var ̸= 0 do statement od.’

• An assignment, which can only assign 0, increment or decrement the variable

• A statement is either a while statement, an assignment or a sequence of statements separated by
semicolons

• A simple program is a statement

Markov Algorithms
Markov algorithms were introduced by Markov in 1954. They are also equivalent in power to Turing ma-
chines. A markov algorithm over an alphabet Σ is a finite ordered sequence of productions x → y where
x, y ∈ Σ∗.

Some productions may be labelled with halt, but it is not required. If there is a production x → y such
that x occurs as a substring of w, then the leftmost occurrence of x in w is replaced by y. The algorithm
transforms one string over Σ∗ into another string over Σ∗, and so it computes a function from Σ∗ to Σ∗.

add execution
Post Algorithms
Apost algorithm is another string processingmodel, which is also equivalent in power to Turingmachines.

Hugh Baldwin
https://github.com/HughTB/cs-notes

43 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B2: Computability and Equivalent Models II

Lecture - B2: Computability and Equivalent
Models II

13:00 21/11/24 Janka Chlebikova

Recursive Functions
The basic concept of a computable function is that there must be a finite procedure to follow in order to
compute the value of the function for any given input.

Mathematicians created a formal definition of a class of function whose values can be calculated using
recursion, partial recursive functions. Typically, the functions of the following forms are computable–
f(x) = 0, g(x) = x+ 1 and h(x, y, z) = x. Functions such as these can be combined together using simple
rules to construct all computable functions.

Primitive Recursive Functions
If you consider the function exp(x, y) = xy, then you can say that x0 = 1, x1 = x, x2 = x × x, . . ., xy =
x× x× . . . (y occurrences of x). Two ‘rewriting rules’ are then enough to define the function,

x0 = 1

xy+1 = x× xy

If you then consider multiplication–

x× 0 = 0

x× (y + 1) = x+ x× y

and addition–

x+ 0 = x

x+ (y + 1) = (x+ y) + 1

This is effectively rewriting the function as two rules, one for y = 0 and one for y > 0, where y acts
as a ‘countdown’ for the number of remaining computation steps. There are then three basis functions–
successor, zero andprojections–and twowaysof buildingnewprimitive recursive functions fromoldones–
composition and primitive recursion.

• The zero function– zero : N → N, zero(x) = 0

• The successor function– succ(x) = x+ 1

• The projection function– projecti(x1, . . . , xk) = xi, i ∈ {1, . . . , k}

composition
Not all functions are primitive recursive, such as the Ackermann Function

Minimisation
Recursive Functions
A function is partial recursive if it can be built using the base functions, and composition, primitive recur-
sion and minimisation. A function is computable by a Turing machine if and only if it is partial recursive.

Hugh Baldwin
https://github.com/HughTB/cs-notes

44 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B3: Diagonalisation and the Halting Problem

Lecture - B3: Diagonalisation and the Halt-
ing Problem

13:00 28/11/24 Janka Chlebikova

There are limits to computation, and not all problems are algorithmically solvable. This also supports the
Church-Turing thesis, since it shows that if a problem cannot be solved by a turingmachine, it likely cannot
be solved by any form of computer.

These problems which cannot be solved by a computer are known as ‘undecidable problems’.

Diagonalisation
The initial proofs for undecidability used a technique known as self-reference or diagonalisation. Any
computationalmodel that is powerful enough to allow self-referencewill cause problems. To demonstrate
this, we will use the Barber paradox.

Barber Paradox
Suppose there is a small town in which

• There is a single barber

• Every man is clean-shaven, either by shaving themselves or by going to the barber

• The barber obeys the rule ‘Shave all and only those men in town who do not shave themselves’

This then presents a problem if we need to know if the barber shaves himself.

• If the barber shaves himself, then according to the rule he does not shave himself

• If the barber does not shave himself, then according to the rule he does shave himself

There is no solution to this problem, and so it is a paradox.

Countable Sets
How can we prove that two sets are the same size, without counting the elements? If the sets are both
finite, we can pair one item from each set, and if we can pair each item then they are the same size. If a
set is infinite, does the set have the same size as N, or is it larger?

Example

The set of all even numbers is the same size as N, since they can be paired as

1− 2

2− 4

3− 6

4− 8

. . .

A set is known as countably infinite if it is the same size as N. A set is countable if it is finite or countably
infinite, meaning that you can construct a numbered list of all it’s elements. The set of integers, the set of

Hugh Baldwin
https://github.com/HughTB/cs-notes

45 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B3: Diagonalisation and the Halting Problem

odd numbers and the set of rational numbers are all countable.

However, the size of the power set of N is not countable, which we can prove using a method known as
diagonalisation.

Example

To prove that the set P (N) is not countable, we can use proof by contradiction.
Suppose that the set is countable, so we can write down a list of all the subsets of N. It might look
like

1− {2, 3}, 2− {4, 7}, 3− {2, 4, 6, 8}, . . .

So, we have a function f : N → P (N) that maps the numbers to sets such that every set appears in
the list.
If we now define a set T such as: add i to the set T when i /∈ f(i), e.g. 1 ∈ T because 1 /∈ f(1), 3 ∈ T
because 3 /∈ f(3), etc.
T cannot be in P (N) because it is different from every set, but T is a subset of N. This is a contra-
diction, and so P (N) is not countable.

Decision Problems
A decision problem is any which asks a question with a yes or no answer. Examples

A decision problem can be viewed as a language where themembers of the language are instances whose
answer is yes, and non-members are instances whose output is no. A decision problem is decidable if
there is an algorithm which for every input instance of the problem, halts with a correct answer, either yes
or no. If no such algorithm exists, then the problem is undecidable.

Decidable problems correspond to recursive languages. They can be recognised by Turingmachineswhich
halt for every input.

Partial Decision Problems

Definition

An undecidable problem is partially decidable if there is an algorithm which
• Halts with the answer yes for instances that have the answer yes, but
• May run forever for instances which have the answer no

(Or the other way around in some cases)

Partial decidable problems correspond to the recursive enumerable languages, which can be recognised
by Turing machines.

Existence of an undecidable problem
Howmany Turing machines exist? If we let S be a countable set of symbols, then any TM can be coded as
a finite string of symbols over S, with all transition functions one after the other. This means there are a
countable number of finite strings over S, and therefore a function which maps a unique number to each
TM. This means that the set of all TMs is countable.

How many languages exist? A language is a subset of a countable set of strings. We have shown that the
size of the set of all subsets of N is not countable. This means that the set of language is uncountable!

So, we’ve shown that the set of all TMs is countable, and sot the set of languages accepted by TMs is also
countable, but that the set of all languages is uncountable. Therefore, there is a language which cannot
be recognised by any TM, and therefore is an undecidable problem.

Hugh Baldwin
https://github.com/HughTB/cs-notes

46 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B3: Diagonalisation and the Halting Problem

The Halting problem is famous because it was one of the first problems to be proven to be algorithmically
undecidable.

Hugh Baldwin
https://github.com/HughTB/cs-notes

47 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B4: Undecidable Problems

Lecture - B4: Undecidable Problems
13:00 28/11/24 Janka Chlebikova

The Halting Problem
Algorithms may contain loops which may be finite or infinite. The amount of work done by an algorithm
usually depends on the input data.

The halting problem asks the question ‘Is there an algorithm which can decide whether the execution of
an arbitrary program halts on an arbitrary input?’

Youmight initially think that you can simply run the programwith the given input. Thisworks if the program
stops, since it then clearly halted. But if the program doesn’t stop within a reasonable length of time, we
have no way to know if it will halt at some point, and if we’ve not waited long enough, or if it will simply run
forever.

The halting problem is undecidable, or more accurately it is partially decidable, since it will always even-
tually halt if the answer is yes and we just run the program. Therefore, there is no algorithm which could
solve it.

Acceptance Formulation
Define the set A = {< M,w >: M is a TM that accepts w, where < M,w > is a unique coding. This is
another formulation as the halting problem; is there a TM which will recognise the set A? No.

This proof is once again done by contradiction.

Suppose there is a machine Solver for which on every input w and every TMM , would tell us ifM accepts
w. If we build another TM Opposer which does the following

• Take the input w and determines the TM < w > which w encodes

• Ask Solver for the answer, e.g. ‘does the TM < w > accept w’

• If Solver accepts, reject

• If Solver rejects, accept

Opposer must be a valid TM, since Solver always halts.

But what if the input to Opposer is the encoding of Opposer itself?

• Opposer asks Solver for an answer for itself

• If Solver claims that Opposer accepts, then Opposer rejects

• If Solver claims that Opposer rejects, then Opposer accepts

This is a paradox, assuming that Solver exists, and so Solver cannot exist!

Hugh Baldwin
https://github.com/HughTB/cs-notes

48 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B5: Introduction to Computational Complexity

Lecture - B5: Introduction to Computational
Complexity

13:00 05/12/24 Janka Chlebikova

Theoretically, any decidable problems are solvable by Turing machines and therefore modern computers.
However, it is not always practical to solve these problems due to limited time, memory, storage, etc.

Developing a Solution
Developing a solution to a problem typically involves at least 4 steps–

• Designing an algorithm or procedure for solving the problem

• Analysing the correctness and efficiency of the algorithm

• Implementing the algorithm in some programming language

• Testing the implementation

Time Complexity
Informally, onemay describe a program or algorithm as being ‘fast’ or ‘slow’, but the actual execution time
of an algorithm depends on many different factors. This includes– the algorithm itself, the programming
language used to implement the algorithm, the quality of the algorithm, the computer actually running the
code, and the size of the input to the algorithm.

Formally, when analysing the efficiency of an algorithm you would focus on the ‘speed’ (or complexity) of
the algorithm as a function of the size of the input upon which it is run. The time-complexity function T (n)
of an algorithm expresses the number of operations which the algorithm needs to execute to get the result
for an input of size n. You almost always refer to the worst-case time complexity of an algorithm, as then
the algorithm must always finish in that time or less, for all inputs of size n.

Hugh Baldwin
https://github.com/HughTB/cs-notes

49 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B5: Introduction to Computational Complexity

Example

With the array sum problem (given a list of n integers, return their sum), how does the time taken
scale with the size of the input?

• Problem– Add all n integers in the array S
• Inputs– A positive integer n, and an array of numbers S indexed from 1 to n
• Outputs– An integer, the sum of the integers in S

We may chose to implement this using a for-loop over the array which adds the current integer to
a running total at each step. If we implement it using this method, we would have 4 main steps,
each of which taking a different length of time– Initialising the function (t1), setting up the loop (t2),
iterating the loop and adding to the total (t3), finalising the function and returning the result (t4).

• Operation– Adding the current item to the running total is the most expensive (in terms of
time) operation in the implementation

• Input size– The size of the input is proportional to n, the number of items in the array
• Time complexity function– The time required is dominated by the addition operation t3, which
is called n times and so, T (n) ≈ t1 + t2 + t3 × n+ t4

We can then simplify T (n) by removing the less significant times, in this case anything that requires
constant time, and get T (n) = A×nwhereA is a suitable constant corresponding to the number of
primitive operations needed to perform the addition.

Example

Add key searching example
As in the previous example, theremay bemultiple perfectly valid solutions to a problem, but there is often
only one which is optimal, with the lowest time-complexity. It is almost always desirable to reduce the
time-complexity of an algorithm, especially if the algorithm is going to be run repeatedly or on a slow
computer.

The Travelling Salesman Problem
Problem– There are n cities labelled C1, C2, . . . , cn for which the distance di,j between any two cities Ci

and Cj is known. Find the shortest possible path that visits each city exactly once.

Brute-Force
One possible solution to solve this problem would be to brute-force every possible routing, and pick the
one of the shortest length. But, this may be inefficient depending upon how many possible routes there
are. Clearly, there are

• n− 1 ways to select the first city

• n− 2 ways to select the second city

• And so on, until there is only one city left to visit

That means that the number of possible routes would be

(n− 1)× (n− 2)× · · · × 1

2
=

(n− 1)!

2

which is clearly a factorial function, which grows rapidly.

If we were to implement this brute-force function, we would see that each possible route requires n ad-
ditions, and there are (n− 1)! routes, so it would require n × (n− 1)! additions. The time-complexity of
the algorithm would therefore be T (n) = A× n!. This is obviously a very inefficient algorithm, and would
quickly become infeasible to run on a computer with a relatively small number of cities.

Hugh Baldwin
https://github.com/HughTB/cs-notes

50 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B5: Introduction to Computational Complexity

Other Algorithms
There are various other algorithms which can solve the travelling salesman problem, but they all have a
limit to the number of cities before they two become infeasible.

• Various branch-and-bound algorithms can be used with up to 86000 cities

• Progressive improvement algorithms can work well for up to 200 cities

• An exact solution was found for 15112 cities using a solution based on linear programming

Hugh Baldwin
https://github.com/HughTB/cs-notes

51 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B6: Asymptotic Growth

Lecture - B6: Asymptotic Growth
13:00 05/12/24 Janka Chlebikova

There are usually several algorithms which can solve any given problem. Ideally, we want to use the algo-
rithm which has the lowest time-complexity, and uses the least memory.

add time-complexity graph
There are two factors two consider when comparing the time-complexity of two algorithms–

• It is usually important to know how fast the time taken to run an algorithm grows with the size of the
input to the function

• Counting the basic steps in a time-complexity function does not give a completely accurate picture,
since it depends heavily on the programming language, compiler, and computer used to implement
the algorithm, but the difference is at most a constant factor

We can see from this that comparing the time complexity of the algorithms is equivalent to comparing the
asymptotic growth of the time-complexity functions.

Asymptotic Analysis
If we have two algorithms with the time complexities TA(n) = n + 10 and TB(n) = n, then the growth of
the functions is the same, and for large values of n, n ≈ n+ 10.

If the two algorithms instead had the time-complexities TA(n) = 4n2 +3n+10 and TB(n) = 2n2, then the
growth is once again the same, as for large values of n, 4n2 + 3n+ 10 ≈ 2n2 ≈ n2.

If we wanted to formally express the rate of growth of a function, we want to keep the dominant termwith
respect to n , but ignore any constants around it. We also want to formalise that an n log 10n algorithm is
better than an n2 algorithm.

Big-O
One way of formalising this is the Big-O notation. O(. . .) is known as an asymptotic upper bound of a
function.

Informally, when f, g are two non-negative functions, then f(n) is O(g(n)) if f grows at most as fast as g.
Formally, f(n) = O(g(n)) if there exists c, n0 ∈ R+ such that for all n ≥ n0, f(n) ≤ c× g(n).

We write f(n) = O(g(n)) or f(n) ∈ O(g(n)) and read this as ‘f(n) is big O of g(n)’.

Example

2n2 + 10 = O(g(n)) if there exists c, n0 ∈ R+ such that c× g(n) ≥ 2n2 + 10 for all n ≥ n0.
Therefore, 2n2 + 10 = O(n2) since 3n2 ≥ 2n2 + 10 for all n ≥ 4, hence c = 3 and n0 = 4. But we
could also use c = 100 and n0 = 1, since this still holds the rule.

So, Big-O gives an upper-bound on the growth of f , but not necessarily a tight one.

Big Omega (or Ω-notation)
Big Omega is known as an asymptotic lower bound of a function.

Hugh Baldwin
https://github.com/HughTB/cs-notes

52 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B6: Asymptotic Growth

Informally, when f, g are two functions, then f(n) is Ω(g(n)) if f grows at least as fast as g. Formally,
f(n) = Ω(g(n)) if there exists c, n0 ∈ R+ such that for all n ≥ n0, f(n) ≥ c× g(n).

We write f(n) = Ω(g(n)) or f(n) ∈ Ω(g(n)) and read this as ‘f(n) is big omega of g(n)’.

Example

4n2 − 10 = Ω(n2) if there exists c, n0 ∈ R+ such that c× g(n) ≤ 4n2 − 10 for all n ≥ n0.
Therefore, 4n2 − 10 = Ω(n2) since n2 ≤ 4n2 − 10 for all n ≥ 2, hence c = 1 and n0 = 2.

Big Theta (or Θ-notation)
Big Theta is known as the asymptotic tight bound of a function.

Informally, when f, g are two functions, then f(n) is Θ(g(n)) if f is essentially the same as g, to within a
constant multiple. Formally, f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

We write f(n) = Θ(g(n)) or f(n) ∈ Θ(g(n)) and read this as f(n) is big theta of g(n)

Example

add big theta example

finish off from slide 17

Hugh Baldwin
https://github.com/HughTB/cs-notes

53 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B7: Analysis of Algorithms

Lecture - B7: Analysis of Algorithms
13:00 12/12/24 Janka Chlebikova

Sorting Algorithms
• Problem– Sort n integers in ascending order

• Inputs– Positive integer n, array S of integers indexed from 1 to n

• Output– The array S containing the integers sorted in ascending order

There aremany algorithmswhich can be used to sort arrays, each ofwhich has a different time-complexity.
Each algorithm is not explained, as they have been covered in previous modules. Any new algorithms are
explained fully.

Bubble Sort
The algorithmmakes use of two nested for-loops, one of which repeats n− 1 times, and the other repeats
n− i times for every loop of the other for-loop, i.e.

∑n−1
i=1 (n− i).

If you then simplify this, it works out as

n−1∑
i=1

(n− i) = n(n− 1)−
n−1∑
i=1

i = n(n− 1)− n(n− 1)

2
=

n(n− 1)

2

and so, T (n) = Θ(n2).

Exchange Sort
The first unsorted element is compared to every subsequent element, and if they need to be, they are
swapped. This is repeated until no swaps are needed, which indicates that the list is sorted. After each
iteration, the next smallest item is moved to the correct position.

Once again, the algorithm makes use of two nested for-loops, one of which repeats n − 1 times, and the
other repeats n− i times for every loop of the other for-loop, i.e.

∑n−1
i=1 (n− i).

If you then simplify this, it also works out as

n−1∑
i=1

(n− i) = n(n− 1)−
n−1∑
i=1

i = n(n− 1)− n(n− 1)

2
=

n(n− 1)

2

and so, T (n) = Θ(n2).

Insertion Sort
This algorithm makes use of a for-loop with a nested while-loop. This once again works out such that
T (n) = Θ(n2), since it uses nested loops. Any algorithm with nested loops, each iteration of which takes
constant time,will endup running in exponential time, as each loop runs in linear time,whichare effectively
multiplied by being nested.

Hugh Baldwin
https://github.com/HughTB/cs-notes

54 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B7: Analysis of Algorithms

Merge Sort
If the size of the array is already 1, then the algorithm completes in constant time, as the array is already
sorted. The time taken to sort an array of size n is roughly 2T (n2), since it splits the array into two smaller
arrays of size n

2 .

We then need to merge the two arrays together, which requires n comparisons between the items in each
of the arrays, and so runs in linear time. Since each level of recursion spits the problem in half, the number
of recursions needed is the logarithm to the base 2 of n, log2 n.

Since the two steps are linear and logarithmic time, when we multiply the two together, we end up with
the final T (n) = Θ(n log2 n).

Comparison
Since n log2 n grows slower than n2 asymptotically, the merge sort algorithm is more efficient than the
others, at least in the worst case.

Towers of Hanoi
It is not immediately obvious that there is a general solution for n disks, but it can actually be solved
recursively. In general, T (n) ≤ 2 × T (n − 1) + 1, e.g. T (3) ≤ 2 × T (2) + 1. The lower bound for this
recursion is when n = 1, since only 1 move is needed to move the single disk. Therefore, we can say that
the number of steps would be

T (1) = 1

T (n) = 2× T (n− 1) + 1

Hugh Baldwin
https://github.com/HughTB/cs-notes

55 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B8: Problem Complexity and Classification of Problems

Lecture - B8: Problem Complexity and Clas-
sification of Problems

13:00 12/12/24 Janka Chlebikova

As well as the complexity of the algorithm, it is sometimes useful to be able to talk about the complexity
of a problem. There is often no way to give a definitive complexity, but we can at least find the upper and
lower bounds.

Upper Bounds
Upper bounds are typically defined by the most efficient known algorithm, and each time a more efficient
algorithm is found, the upper bound decreases to that point. For example, if the first known algorithmA to
solve a problemQ has a time-complexity ofO(n3), then the upper bound forQwould also beO(n3). Later,
an algorithm is discovered which can solve Q in O(n2) time. The upper bound for Q therefore becomes
O(n2). Each successive algorithm improvement moves the upper bound downwards.

Lower Bounds
Lower bounds are typically defined by what can be proven about the problem. For example, if a problem
Q is proven to not be solvable in less than linear time Ω(n), then the problem complexity cannot be lower
than Ω(n). It is later proven that the problem cannot be solved in less than Ω(n log2 n) time, and as such,
the lower bound for the complexity becomes Ω(n log2 n). Each successive proof moves the lower bound
upwards.

Finding these proofs is typically very difficult, as it must be generalised for all possible algorithms that can
solve the problem. As the lower bound approaches the upper bound, it becomes harder and harder to
prove.

Open Complexity
The complexity of most problems is not fully known. In some cases, the upper and lower bound reach
the same complexity, in which case that is exactly the problem complexity. In the vast majority of cases,
there’s a difference between the upper and lower bounds, meaning that more experimentation and re-
search needs to be done into the topic to be certain.

There are some simple problems which we do know definitively the complexities for–

• Searching an unordered list of items– Upper and lower bound are linear, so problem complexity is
Θ(n)

• Searching an ordered list of items– Upper and lower bound are logarithmic, so problem complexity
is Θ(log n)

• Sorting an arbitrary array– Upper and lower bound are both logarithmic, so problem complexity is
Θ(n log n)

From this, we can also see that the merge sort algorithm is already as efficient as possible at sorting an
arbitrary array, as it’s time-complexity is Θ(n log n).

Hugh Baldwin
https://github.com/HughTB/cs-notes

56 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B8: Problem Complexity and Classification of Problems

Decision Trees
Decision trees can be used to prove a lower bound as being logarithmic. Since we can often use a tree
to represent the decision process that takes place in an algorithm, it is a useful tool to see how many
decisions are actually required to solve a problem. If each step has only two outcomes, then it is a binary
decision tree. We may need a tree with more possible outcomes, in which case we can use a tree with a
higher degree, where there are at most k outcomes at each step, for some constant k.

The depth of a decision tree often corresponds to the lower bound for the complexity of a problem, as the
worst-case scenario for the run time is just the maximum depth. The depth is certainly a lower bound on
the actual running time, which is typically good enough to prove the lower bound for the complexity of a
problem.

Why Logarithms?
If a problem has n different outputs, then any decision tree for the problem must have at least n leaves.
Since the number of leaves in a binary tree of height h is at most 2h, 2h ≥ n, and so the height of the
decision tree must be at least ⌈log2 n⌉ or Ω(log n).

Intractable Problems
We’ve seen decidable and undecidable problems so far, but some problems are partially decidable, mean-
ing there is an algorithm which may return yes, but may never return no for any given input.

Decidable problems can also be split into three categories–

1. (Proven) Intractable– Solvable, but impractical

2. (Apparently) Intractable– Problems which appear to be intractable but which have not been proven
so

3. Tractable– Practically solvable

Proven Intractable Problems
There are two types of problems in this category, those which require a non-polynomial amount of time to
solve, such as the travelling salesman problem and the towers of Hanoi. Both are proven to be solvable,
but require unreasonable amounts of time, requiring (n− 1)! and 2n − 1 steps to solve, respectively.

There are also problems which do not require a non-polynomial amount of time, but which we can prove
cannot be solved in polynomial time. Only a few of these problems are known to exist, and all of them
were created with the sole intention of proving their existence, not to solve a real problem.

Apparently Intractable Problems
In the case of these problems, no polynomial-time algorithms have been discovered, but it has also not
beenproven tonot exist. Examples of this include theHamiltonian cycle and travelling salesmanproblems.

Tractable Problems
Tractable problems are those that already have a polynomial-time algorithm to solve them.

Decision Problems
All previous discussion includes any types of problem, including decision problems, but there are some
unique features of decision problems. They are all those problems whose outputs are simply yes or no.
Many problems can also be re-written to become decision problems. For example, we could re-write the

Hugh Baldwin
https://github.com/HughTB/cs-notes

57 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B8: Problem Complexity and Classification of Problems

travelling salesmanproblemas–Givenn cities, the pairwise distances between themand a constant d > 0,
is it possible to find a round trip with a total length less than d?

Complexity Classes
Decision problems can be separated into so-called complexity classes, P ,NP andNP − complete.

P

The class P is the set of all decision problems that can be solved by polynomial-time algorithms. That
means that it is also just the set of tractable decision problems. It does not contain proven intractable or
undecidable problems, as are proven to not be solvable in polynomial time.

NP

The classNP is the set of all non-deterministically polynomial problems. That means that there is a non-
deterministic algorithm which can solve the problem in polynomial time. A non-deterministic algorithm
allows at every possible step multiple continuations. These algorithms accept an input if there exists a
sequence of choices for which the algorithm returns yes. What this really means is that the algorithm
must be able to produce a yes within polynomial time, but may take longer to produce a no.

AnNP solution can be thought of as having two stages–

• Guessing Stage– Make a guess at a solution, using any means

• Verification Stage– A deterministic algorithm checks if the solution completes in polynomial time,
definitely halting in every case where the answer is yes

One example of this is the decision version of the travelling salesman problem, as we only need to be able
to decide if the solution is correct in polynomial, not actually come up with the solution.

Hugh Baldwin
https://github.com/HughTB/cs-notes

58 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B9: P, NP and NP-Complete Problems

Lecture - B9: P, NP and NP-Complete Prob-
lems

13:00 19/12/24 Janka Chlebikova

P and NP

To prove a problem is in P , you must write an algorithm which can solve it in polynomial time. To prove a
problem is inNP , you mist write an algorithm which can check a given yes-solution in polynomial time.

Everything in P is in NP , such as P ⊆ NP , since to be in P the problem must be solvable in polynomial
time with a deterministic Turing machine, which is also clearly a non-deterministic Turing machine.

So far, no one has found a problem inNP which is definitely not in P , but also it has not been proven that
all problems inNP are also in P . The consensus so far is that P ̸= NP , but it is still as yet unproven.

NP -complete
Within theNP problems, some are more ‘difficult’ than others. In 1979, Cook discovered that there are a
number of problemswhich are the hardest inNP , knownas theNP -complete problems. Thefirst problem
shown to beNP -complete was the satisfiability problem.

Satisfiability Problem–Given a boolean expressionwritten using only AND,OR,NOT, variables and paren-
theses, is there an assignment of True/False values to the variables which makes the entire expression
true? Every such boolean expression is equivalent to the one in conjunctive normal form.

The base problem is inNP , as the checking stage can be performed inO(n) time. A restricted form of the
problem, the 3-satisfiability problem, isNP -complete.

NP -complete problems are all equivalent in the sense that if any one of them is in P , then all of them are.
If anyNP -complete problem is shown to have a polynomial time solution, we can deduce that P = NP .

AnyNP problem can be solved by an exponential algorithm, but for none of them a polynomial algorithm
is known. Further, no-one has been able to prove that no polynomial algorithm exists for any of those
problems.

Definition

A decision problem, B isNP -complete if
• B ∈ NP
• A ≤ B for all problems where A ∈ NP , i.e. NP -complete problems are problems in NP to
which all otherNP problems can be reduced in polynomial time

To prove that a problem isNP -complete–
1. Prove that the problem is inNP
2. Find anNP -complete problem A which can be polynomially reduced to the problem

Polynomially Reducible
Given two problems, a polynomial-time reduction is an algorithm which runs in polynomial time and re-
duces one problem to the other. Suppose that we know how to solve problemB and want to know how to

Hugh Baldwin
https://github.com/HughTB/cs-notes

59 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B9: P, NP and NP-Complete Problems

solve problemA. What we need to find is a polynomial reduction which transforms the an input IA ofA to
the input of IB of B in such a way that B’s answer to IB is the same as A’s answer to IA.

Then, if we have an input IA to A, we can transform IA to an input IB for B, and use the algorithm for B
to get the desired output. Therefore, if we had a polynomial algorithm for B, we would have a polynomial
algorithm for A as well.

add example?
NP -hard
A problem is NP -hard if all NP problems can be polynomially reduced to it. An NP -hard problem does
not need to be in NP , and it does not need to be a decision problem. For example, the original TSP is
NP -hard, and the decision version of the TSP isNP -complete.

Hugh Baldwin
https://github.com/HughTB/cs-notes

60 of 61 M21276

https://github.com/HughTB/cs-notes

Lecture - B10: Tackling NP-complete & NP-hard Problems

Lecture - B10: Tackling NP-complete & NP-
hard Problems

13:00 12/12/24 Janka Chlebikova

If the problem is known to be NP -complete or NP -hard, then we know there is no point looking for an
optimal solution. Instead, it may be useful to look for an algorithm which comes close to the real answer,
or which can get the correct answer for a subset of inputs.

Heuristic Solutions
An algorithm which works ‘reasonably well’ for many instances, but for which there is no proof that the
algorithm is always fast or always produces a good solution. This also contains genetic algorithms.

Approximation Algorithms
An algorithm which finds a solution that is ‘close’ to optimal in polynomial time, for every instance. There
must be aproof that theseproperties are true. For any givenproblem, ‘close’mayhave adifferentmeaning,
either due to thenature of theproblem, or the neededaccuracy of the solution. The ‘closeness’ couldmean
anything arbitrarily close to the optimal solution, such as 1+ϵ for any ϵ, or a constant factor, or evenworse.

Restricting the Input
SomeNP -hard andNP -complete problems can be in P , if we solve them only for a subset of the inputs.
For example, the 3-satisfiability problem is NP -complete but the 1- and 2-satisfiability problems are in
P .

Parametrisation
There are often fast algorithms to solve problems, if certain parameters are fixed, or have a small value.

Probabilistic Solutions
There are some algorithms which are usually correct, but give an incorrect answer in a small number of
cases.

Hugh Baldwin
https://github.com/HughTB/cs-notes

61 of 61 M21276

https://github.com/HughTB/cs-notes

	I Part A
	Lecture - Induction Lecture
	Lecture - A1: Introduction to Languages
	Lecture - A2: Grammars
	Lecture - A3: Regular Languages
	Lecture - A4: Finite Automata
	Lecture - A5: Finite Automata & Regular Languages
	Lecture - A6: Beyond Regular Languages
	Lecture - A7: Pushdown Automata
	Lecture - A8: Applications of Context-Free Grammars
	Lecture - A9: Turing Machines
	Lecture - A10: Computing with TMs & Alternative Definitions
	Lecture - A11: More About Turing Machines

	II Part B
	Lecture - B1: Computability and Equivalent Models
	Lecture - B2: Computability and Equivalent Models II
	Lecture - B3: Diagonalisation and the Halting Problem
	Lecture - B4: Undecidable Problems
	Lecture - B5: Introduction to Computational Complexity
	Lecture - B6: Asymptotic Growth
	Lecture - B7: Analysis of Algorithms
	Lecture - B8: Problem Complexity and Classification of Problems
	Lecture - B9: P, NP and NP-Complete Problems
	Lecture - B10: Tackling NP-complete & NP-hard Problems

