BSc (Hons) Computer Science

University of Portsmouth
Second Year

Programming Applications and

Programming Languages

M30235
Semester 1&2

Hugh Baldwin

hugh.baldwin@myport.ac.uk

CONTENTS

Contents

I

Teaching Block I

II Teaching Block II

1

2

8

9

Lecture - Intro to Programming Languages
Lecture - Implementation and Compilation
Lecture - Regular Expressions

Lecture - Deterministic Finite Automata
Lecture - Describing Language Syntax
Lecture - Syntax Analysis and Parsing
Lecture - LL(k) Parsers

Lecture - Bottom-Up Parsing

Lecture - Scopes and Memory Allocation

10 Lecture - Elementary Data Types

11 Lecture - Compound Data Types

12 Lecture - Expressions and Assignments

13 Lecture - Control Structures

14 Lecture - Functions and Parameter Passing

15 Lecture - ADTs and Concurrency

Hugh Baldwin
https://github.com/HughTB/cs-notes

10f42

11

14

16

19

21

23

26

28

30

34

37

40

M30235

https://github.com/HughTB/cs-notes

PartI

Teaching Block I

Hugh Baldwin 20f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

The first teaching block is 100% coursework, which makes up 50% of the overall grade. While there
are lectures, they are informal, mostly teaching the basic concepts of Flutter, which is very practical, and
so notes will not be made here.

Hugh Baldwin 30f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Part I1

Teaching Block II

Hugh Baldwin 4 0f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Intro to Programming Languages

Lecture - Intro to Programming Languages

14:00 22/01/24 Jiacheng Tan

Since there are many different types of application, there are also many types of programming lan-
guage. The main programming domains are as follows

« Scientific (e.g. ForTran)

Business (e.g. COBOL)

Al (e.g. LISP)

Systems Programming (e.g. C, C++)

Web Software (e.g. HTML, JavaScript)

Language Categories

There are several ways to categorise programming languages, such as by uses, paradigms, abstraction
level, etc
Machine Languages

« Machine languages directly run on the hardware, using the instruction set of the processor

« Machine code is usually written in hexadecimal as this is a more efficient way of displaying the binary
which represent the instructions

 Itisvery hard for programmers to directly write machine code, as it is not easy to remember instruc-

tions and it lacks features such as jump targets, subroutines, etc

Assembly Languages

« Aslight abstraction over machine languages

« Each instruction is replaced with an alphanumeric symbol which is easier for programmers to re-
member and understand

« Theyalsoinclude features such as subroutines, jump targets, etc which make it much easier to create
complex programs
System Programming Languages

» More abstracted from machine languages, but you are still concerned with low-level functions such
as memory management

« Used to create operating systems, and for embedded applications where low system requirements
do not allow the use of high-level languages

High Level Languages

- Languages that are machine-independent (are not written directly in machine code, and are therefore
portable between CPU architectures)

» Need to be compiled or otherwise translated from text to machine code before they can be run

Hugh Baldwin 50f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Intro to Programming Languages

Scripting Languages
« Used to create programs which perform a single, simple task
» These are used for system administration
« Usually interpreted languages

« More akin to pseudocode than other programming languages

Domain-Specific Languages
« Some languages are designed to perform a specific task much more efficiently

» The specific purpose could be just about anything, but are specific to that task and either cannot be
used otherwise or are not well suited for it

Programming Paradigms

There are several different paradigms which are used in programming
 Procedural

— Most programming languages are procedural
— A program is made up of one or more routines which are run in a specific order

« Functional

- Applies mathematical functions to inputs to get a result
- Useful for data processing applications such as data analysis or big data

- Logical
There are also two major types of programming languages, which are designed for different purposes
« Imperative Languages

- Programs are defined as a sequence of commands for the computer to perform
- Like a recipe for exactly how to get the desired output

« Declarative Languages

- Programs describe the desired results without actually specifying how the program should com-
plete the task

— Functional and logical programming languages are examples of this

Hugh Baldwin 6 0f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Implementation and Compilation

Lecture - Implementation and Compilation

14:00 02/02/24 Jiacheng Tan

There are 3 main methods of implementing a language:

« Compilation - Programs are translated into machine language, either before (Compilation) or during
(JIT) execution

« Pure Interpretation - Programs are interpreted by another program, known as an interpreter
» Hybrid Interpretation - A compromise between the two, code is compiled into an intermediary lan-

guage, which is then interpreted with a Language Virtual Machine

Compilation

High-level code is translated into machine code for a specific platform

This results in slow translation, but much faster execution

The compilation process has multiple stages

Lexical Analysis - Converts characters in the source into lexical units

Syntax Analysis - Transforms lexical units into parse trees which represent the syntactic struc-
ture of the program

Semantics Analysis - Generate intermediary code

Code Generation - Intermediary code is translated into platform-specific machine code

The program which completes this process is known as the Compiler

During this process, the compiler uses a ”Symbol Table”, which each stage interacts with

Lexical Analysis

The scanner reads the source code one character at a time and returns a sequence of tokens which are
sent to the next phase. Tokens are symbolic hames for elements of the source language. An example of
a token in C++ is the keyword ‘void‘, which is a type definition, another example is ‘;, which delimits the
end of a statement. Each token is also stored in the symbol table, along with it’s attributes.

Symbol Table

The symbol table stores all of the identifiers of a source program, along with their attributes. These at-
tributes include information such as the type of a variable, the size or length of a string or array, the argu-
ments to be used with a function and the types of each argument, etc.

Syntax Analysis or Parsing

The parser analysis the structure of the source code. The parser takes the output of the lexical analyser
as a sequence of tokens. It attempts to apply the syntactic rules (or grammar) of the language to the
sequence of tokens. The parser uses the language’s grammar to derive a parse tree for each statement.
Parsers usually construct Abstract Syntax Trees (ASTs), which are slightly simpler and easier to represent
with a computer, but which still represent the same syntax. If the syntax tree is invalid for the language’s
grammar, a syntax error is generated and the compilation process stops

Hugh Baldwin 7 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Implementation and Compilation

Semantic Analysis

The semantic analyser catches any other issues that are still valid syntax. For example, if you attempt to
add a string to a float, it could still be syntactically correct, but semantically makes no sense and is not
possible to compute. It is also able to find issues with the variable types of function arguments, such as
attempting to use a string in the place of an integer or float.

Code Generation and Optimisation

The code optimiser attempts to improve the time and space efficiency of the program. It can do this in
several ways, such as simplifying constants (e.g. replacing 10 * 10 with 100), removing unreachable code,
optimising the flow of code, etc.

The final task of the compiler is to generate the final output code. This could be in the form of platform-
specific machine code, or intermediary code for use with a virtual machine. This stage also deals with
scheduling and assigning registers for use during execution

Pure Interpretation

« High level code is directly executed by another program known as the interpreter

« There is no syntax or semantics analysis, and there is no optimisation

Only really suitable for small, non-real-time applications

It also often requires more space as it needs to store the symbol table during execution

« Very few modern languages use interpreters, other than Python, JavaScript and PHP

Hybrid Interpretation

« A compromise between compilers and pure interpreters

« High-level languages are translated or compiled into an intermediary language, using the same com-
pilation steps as before

« The intermediary code is then run by a platform-specific virtual machine, which interprets the code
into machine language

Just-in-Time
- Programs are initially translated into an intermediary language

« Thisis then loaded into memory and segments of the program are then translated into machine code
just before execution

« The machine code is then kept in case the function is called again somewhere else in the program

« This drastically improves the execution speed as compared to pure interpretation, but is still slower
and typically less space and memory efficient than a compiled program

Hugh Baldwin 80f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Regular Expressions

Lecture - Regular Expressions

14:00 05/02/24 Jiacheng Tan

The full definition of a language includes definitions of it’s lexical structures, syntax and semantics. The
lexical structures of a language are the form and structure of the individual symbols, such as keywords,
identifiers, etc. The syntax determines the structure of the language, such as how a statement is defined,
how to structure an expression, and so on. The semantics of a language determine how you can use each
operator, what types they support, checking for type consistency in strongly typed languages, etc. The

| T4

semantics of a language also define it’s “grammar”, which is how the compiler enforces the semantics.

Language Analysis

The implementations of a language must analyse the lexical and syntactic structure of the source code to
determine if it is valid or not. This is usually implemented using two separate systems, the lexical analyser
and syntax analyser. If the analyseris implemented using regex, it is a finite automaton, based on a regular
grammar (that of the language)

Lexical Analysis

A lexical analyser reads the source code one character at a time and outputs a list of tokens to the next
stage of the compiler. These tokens are made up of smaller substrings of source code, known as lexemes.
Each lexeme matches a character pattern from the language’s grammar.

The lexical analyser can be implemented in several ways, but the most common are by using regular
expressions (Regex), or a deterministic finite automata (DFA).

Definitions
* The Alphabet

— Each language has it’s own alphabet, which is the set of all characters which could be used in a
lexeme

— An alphabet is usually represented using

 String or Word

A string or word over an alphabet is a finite string of symbols from the alphabet

The length of a string is the number of symbols which make up the string

An empty or null string is denoted by ¢, and so | ¢ |= 0

The set of all strings over ¥ is denoted by X*.
For a symbol or string x, X" represents a string of that symbol, n times, e.g. a* = aaaa

Regular Expressions

Regular expressions specify patterns which can be used to match strings of symbols. A regular expression,
r matches or is matched by a set of strings if the strings conform to r’s pattern. The set of strings matched
by ris denoted by L(r) C X%, i.e. all strings which are over the alphabet . This is known as the language
generated by r.

() is in and of itself a regular expression, but does not match any strings at all, and is only very rarely
useful. € is also a regular expression, which matches only the empty string e.

Hugh Baldwin 9o0f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Regular Expressions

Since ¢ is an empty string, it can be used as the identity element for concatenation, and as such, e +s =
S+e=s.

For each symbol where ¢ € ¥, c is a regular expression over . In this case, the expression only
matches a single instance of the symbol.

If r and s are both regular expressions, then r | s is also a regular expression. a | b would match a
single instance of either a or b. a | e would match a single instance of a or e.

If r and s are both regular expressions, then rs is also a regular expression. This would match a single
instance of the string rs, as the string would have to match both the regular expression r and s. As with
arithmetic expressions, brackets can be used to make the meaning of a regular expression clearer. e.g.
(a | b)a matches the strings aa and ba

If ris a regular expression, then rx would match any number of rs in a row. Specifically, it means zero
or more instances of r. r+ would match one or more instances of r, which could also be written as rrx.

As with arithmetic expressions, there is a specific order of operations which the symbols must fol-
low. The order is as follows: (), * or +, concatenation, |. This is similar to arithmetic as anything inside
parentheses must be processed before everything else.

Aregular definition is a named regular expression, which can be used to make up more complex regular
expressions, without re-writing the same expression several times. For example, you might define number
asnumber=0]---|9

Regular Expressions for Lexical Analysis

Regular expressions provide a method to describe the patterns which make up the lexical structure of
a language, as well as restricting the alphabet which can be used to write source code. In most cases,
languages use a standard alphabet, such as ASCII or UTF-8. An example of a regular expression used in
a typical language could be if for the token of IF, ; for a semicolon, (0 | --- | 9)+ for a number, etc.

Languages are sets of strings chosen from some alphabet ¥. More formally, a language L over an
alphabet X, L. C ¥*.

Given a language L over some alphabet ¥, it is necessary to be able to write an algorithm which takes
any input string w € ¥*, and outputs True if w € L and False if w ¢ L. This algorithm is known as a deci-
sion procedure for L. A decision procedure can be written using either a Deterministic Finite Automaton
(DFA) or a Non-deterministic Finite Automaton (NFA). Any language which can be denoted by a regular
expression is known as a regular language.

Hugh Baldwin 10 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Deterministic Finite Automata

Lecture - Deterministic Finite Automata

14:00 09/02/24 Jiacheng Tan

Rather than regular expressions, you can use state transition diagrams to describe patterns, or the
process of matching said patterns. State transition diagrams (or state diagrams) are directed graphs which
represent Finite State Automata (FSA) or Finite Automata (FA)

FSA

An FSA has
« A set of states

= Aunique start state

A set of one or more final/accepting states

An input alphabet, including a unique symbol to represent the end of the input string

A state transition function, represented by the edges of a directed graph from one state to another,
labelled by one or more symbols of the alphabet

Mathematically speaking, an FSA M consists of

« A finite set, Q, of states

A finite alphabet, ¥ of input symbols
« Aunique start state,q; € Q

« A set of one or more final/accepting states, F € Q

A transition function § : Q x ¥ — Q which selects a new state for M based on the current state, s € Q
and the current input symbola € ¥

DFAs and NFAs

A finite automata can be either deterministic (DFA) or non-deterministic (NFA). For a FA to be deterministic,
it must perform the exact same state transition in a given situation (it’s current state and input). If the FA
is non-deterministic, it can perform any state transition in a given situation

DFAs for Lexical Analysis

In the context of lexical analysis, a DFA is a string processing machine, using the following process, being
in one of a finite set of states at any given step

» Read a string from left to right, one symbol at a time

« On reading a symbol, move to a new state determined by the current state and the symbol which
was read

« Upon reading the final symbol, if the current state is an accepting state, then the string is valid. If
not, the string is invalid

Hugh Baldwin 11 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Deterministic Finite Automata

Transition Diagrams

A DFA is usually represented using a transition diagram. This is a directed graph in which each node rep-
resents a possible state, and each edge a transition between states. The label for each edge determines
what input character is required for the transition to take place. The DFA begins in the initial state, repre-
sented by the small arrow pointing into state 1. Each edge is labelled with the character required to make
that transition, such as requiring an ‘a’ to transition from state 1 to 2. Transitions can move to another
state, or return to themselves. The accepting state, 4, is represented by a double circle.

a, b

Figure 4.1: A simple DFA, M, which uses the alphabet ¥ = {a, b}

For this DFA, the equivalent regular expression could be either r = abb* orr = ab™. In the case of the
transition diagram above, the DFA would be defined as

* Q ={s1,S2,53,54} is the set of states
- ¥ ={a, b} isthe DFA’s input alphabet
* g1 = S1, € Qis theinitial state

« F = {s4} is the set of accepting states

The transition function can be represented as the following set of triples:
{(s1,2,82),(s1,b,83), (52,2, 83), (S2, D, 84), (S3,{a, b}, 83), (S4,2,83), (S4, b, S4) }

Languages

The set of all strings which a DFA accepts is known as it’s recognised language. For a DFA, M, the language,
L(M) is defined as the set of all strings w € ¥* such that, when the DFA starts processing w from it’s initial
state, it ends up in an accepting state. For example, the language, L.(M) of the DFA above could be defined
as L(M) = {ab™ | n > 1}, and therefore is the same as the regular expression r = ab™. For any regular
expression, 1, there is a DFA or NFA, M, such that L(r) = L(M). This makes DFAs and transition diagrams
very useful for creating regular expressions, and testing that they work as intended.

Simplifying Transition Diagrams

Since most regular expressions, and therefore FAs, work with real languages such as English, each tran-
sition may have many characters for which it is valid. For example, a letter match would require 52 char-
acters, one for each lower-case and capital letter. For this reason, as with regular expressions, you can
define a set of symbols which are then used to label each transition, without rewriting the entire set of
characters each time.

Hugh Baldwin 12 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Deterministic Finite Automata

Building a Lexical Analyser

Lexical analysers tend to be built using one of three methods

- Write the formal description, e.g. a regular expression, of the token patterns, then use this as an
input to a program such as Lex, which automatically generates a lexical analyser based upon the
input

» Design DFAs which describe the patterns, then write a program to implement the DFAs
- Design DFAs which describe the patterns, then write a table-driven implementation of the DFAs

There are also algorithms which can be used to automatically construct a lexical analyser from the DFAs

Lex

Lex was originally written in the 70s, but since then several variants have been created, such as Quex which
is a much faster implementation of the same algorithms, written in C and C++. The program takes an input
file, called a lex file, which contains regular expressions for various tokens, and automatically generates
the C source code for a lexical analyser.

In it’s most basic form, a Lex file consists of a series of lines in the form pattern action, where
pattern is a regular expression which should be matched, and action is a piece of C code.

Hugh Baldwin 13 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Describing Language Syntax

Lecture - Describing Language Syntax

14:00 16/02/24 Jiacheng Tan

Context-Free Grammars

There are four classes of grammars for describing natural languages: regular, context-free, context-sensitive,
and recursively enumerable. Of these, regular and context-free grammars have been found to be useful for
describing programming languages. Context-Free Grammars are by far the most widely used in describing
programming languages.

A context-free grammar is usually defined as a tuple, G = (T, N, S, P), where

« T -Afinite, non-empty set of terminal symbols, which consist of strings referring to parts of sentences
in the language

- N - A finite, non-empty set of non-terminal symbols, which refer to syntactic structures defined by
other structures and rules

« S e N - The start symbol

« P - A set of (context-free) productions of the form A — « (A produces o) where A € N and a €
(TUN)*

For example, G1 = (T, N, S, P) where
« T={a,b}
« N={s}
« P={S —ab,S — aSh}
or Ga = (T,N, S, P) where
« T={a,b}
- N={S,C}
e P={S—¢S—C,S—aSa,S—bSh,C— a,C— b}

As you can see, Gy uses a recursive production to allow for more complex productions to be simplified.

Shorthand

Rules for each non-terminal can be written in an alternative shorthand notation, using |. For example, G1
could also be written as G | ab | aSh.

Backus-Naur Form (BNF)

Another alternative nottaion for CFG definitions is the Backus-Naur Form (BNF). In BNF, non-terminal
symbols are given a descriptive name, enclosed within < >. For example, you could define <digit> to
represent 0,1,...,9. This is typically the for which programming languages are actually defined in.

As an example, you could use <exp>, <number>and <digit>asnon-terminals,and +, —, %, /,0,1,...,9
as terminal symbols. Using these symbols, the syntactic structure for an arithmetic expression could be
defined by the following productions:

Hugh Baldwin 14 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Describing Language Syntax

<exp> -> <exp> + <exp> | <exp> - <exp> | <exp> * <exp>
| <exp> / <exp> | (<exp>) | <number>

<number> -> <digit> | <digit> <number>

<digit> ->0 | 12| 2| 34|56 718129

Derivations

You can use a context-free grammar to derive strings of terminal symbols. Starting with the start symbol S,
you repeatedly apply the production rules until you are left with a string containing only terminal symbols,
which is known as a sentence. This process is known as a derivation. Every string of symbols in a derivation
is a sentential form.

For example, if we used the grammar G, we can derive the string abbba as follows

« Start at the symbol S
« Apply the rule S — aSa, and replace S with aSa to obtain the string aSa

« Apply the rule S — bShb, and replace the S in aSa with bSb to get the string abSba

Apply the rule S — C, and replace the S in abSba with C to get the string abCba

Apply the rule C — b, and replace the C in abCba with b to get the final string, abbba which consists
only of terminal symbols

If we can get from « to 5 using a single production, you can say that o immediately derives 3, which is
written as @ = . Therefore you can write the full derivation of abbba from S as

S = aSa
= abSbha
= abCbha
= abbba

With this definition of a derivation, we can define a language as “A grammar is made up of exactly those
sentences which can be derived from it”

Left- and Right-Most Derivations

A derivation can be either left- or right-Most, depending upon the order in which non-terminal symbols are
resolved. If you start from the left and work rightwards, that is the left-most derivation of the sentence. If
you were to instead start from the right and work leftwards, that would be a right-most derivation of the
sentence. You can also have a neither left- nor right-most derivation, in which you start in the middle and
work outwards.

For some grammars, the left- and right-most derivations of a given sentence could be different, i.e.
have a different parse tree.

Parse Trees

You can also represent the structure of an expression given by a derivation as a parse tree. I will not give
an example, but the internal nodes represent non-terminal symbols which are used in the derivation, and
leaf nodes represent the terminal symbols.

Hugh Baldwin 15 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Syntax Analysis and Parsing

Lecture - Syntax Analysis and Parsing

14:00 19/02/24 Jiacheng Tan

Ambiguity

Some grammars are ambiguous, such that there are multiple valid derivations of any given sentence. This
means that the parse trees would be different, and therefore could produce different results. For example,
using the same grammar as the previous lecture, a left-most derivation of the sentence x + y * z could
be either

<exp> => <exp> + <exp>
=> X + <exp>
X + <exp> * <exp>
=> X + Yy * <exp>
X +y % 2

which would give you a parse tree equivalenttox + (y % z),oritcould be

<exp> => <exp> * <exp>
=> <exp> + <exp> * <exp>
=> X + <exp> x <exp>
=> X + y * <exp>
=> X +Vy % z

which would give you a parse tree equivalent to (x + y) * z, which gives you a completely different
value.

For almost any language, it is possible to completely remove the ambiguity by introducing new or extra
non-terminals and rules. For example, if you were to add a new rule that forces the + operation to appear
higher in parse trees than *. E.g.

<exp> -> <exp> + <term> | <term>
<term> -> <term> x <factor> | <factor>
<factor> ->x | y | z

where term and factozr are new non-terminals which have been added to remove the ambiguity.

The Limits of Context-Free Grammars

Some programming languages cannot be fully described using only CFGs. For example, if a variable must
be defined before it is referenced, the context is required to determine whether the reference or decelera-
tion comes first. These are known as Context-sensitive properties, and must be resolved by the semantic
analyser rather than the syntax analyser.

Syntax Analysis

Given some input source code, the goal of syntax analysis is to: find all syntax errors and produce a de-
scriptive error for the user; and produce the parse tree for the program to be used in code generation. This
process is completed by a syntax analyser, sometimes known as the parser. There are several algorithms
which can be used for parsing, which fall into two categories - top-down and bottom-up parsers.

Hugh Baldwin 16 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Syntax Analysis and Parsing

Top-Down Parsers

Starting at the root (the start symbol of the grammar), each node of the parse tree is visited before it’s
branches. The branches are visited from left-to-right, giving a left-most derivation. When manually per-
forming the derivation, you start by replacing the start symbol with the right-hand-side of it’s production.
Then you replace the left-most non-terminal symbol with the right-hand-side of (one of) it’s production(s).
You repeat this process until the string consists only of terminal symbols.

With the grammar

S -> AB
A -> aA | Epsilon
B ->b | bB

and the string aaab

S

AB

aAB

aaAB

aaaAB
aaaiEpslioniB
aaaB

aaab

More on Top-Down Parsers

Different top-down parsers may use different information or rules to determine which production should
be selected to replace a non-terminal symbol. Most compare the next input token with the first symbol
of each production, these parsers are known as predictive parsers. These work using only the next input
symbol and the current non-terminal.

Recursive-Descent Parsers (RDP)

A recursive descent parser is an implementation of a parser based upon the BNF of a grammar. An RDP
consists of a collection of functions (or sub-programs), many of which are recursive. Each non-terminal
symbol corresponds to a single function, which handles parsing that particular non-terminal symbol in the
grammar. For example, if you wanted to implement the following grammar

<exp> -> <exp> + <term> | <exp> - <term> | <term>
<term> -> <term> x <factor> | <term> / <factor> | <factor>
<factor> -> integer | (<exp>)

with an RDP, you would need to implement 3 functions - exp (), term() and factor (). Assuming that
there is another function, 1ex () which updates the variable nextToken to be the next token in the sen-
tence, each function will need to

« Check if the symbol is terminal, in which case make a call to 1ex ()

» Check if the symbol is non-terminal within the current production, in which case make a call to the
corresponding function

- Ifitis neither, then there is a syntax error and it should be raised with a helpful message for the user

Hugh Baldwin 17 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Syntax Analysis and Parsing

Rules With Multiple Productions

When parsing a rule with more than one production, it is necessary to select which of the productions
should be parsed. This can be done in several ways, but in the case of a predictive parser, the production
should be selected based upon the next input token. The next input token is compared with the first token
of each production until either a match is found, or all options are expended. If the token does not match
any of the productions, there is a syntax error and an error should be raised with a helpful message for the
user.

Rules with Left Recursion

If a grammar has left recursion, it cannot be directly used by a recursive-decent parser. This is because it
leads to an indefinite or non-terminating recursion loop. A left-recursive grammar cannot be transformed
into one which is not left- recursive. Instead, the grammar must be modified to remove any direct left
recursion. For each non-terminal, A, group the Arulesas A — Aag | Aag | -+ | B1 | By | --- | Bn
where Aap, represents any rules with left-recursion, and By represents any rules without. To get rid of
the direct recursion, you have to add a new non-terminal, such as A and replace the original rules with
A — B1A7 | BoAr |-+ | BpArand A7 — a1 A7 | aAr | -+ | amA/ | €

Hugh Baldwin 18 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - LL(k) Parsers

Lecture - LL(k) Parsers

14:00 23/02/24 Jiacheng Tan

An LL(k) parser is a top-down, predictive parser. It’s name means that it parses from (L)eft-to-right,
(L)eft-most derivation, with (k) tokens of look-ahead. They are also known as a table-driven predictive
parser, since they use a stack and a parsing table.

An LL(1) parser parses the input left-to-right, and always using a left-most derivation. In this case, it
uses one token of lookahead to predict which production should be used. It also uses a stack to store the
symbols of the right-hand-side of productions, in right-to-left order, as that way the left-most symbol is
always at the top of the stack. A parsing table is also used to store the rules which the parser should use
based upon the input token and which value is at the top of the stack.

Parse Tables

With the grammar

E -> TE'
E’ -> +TE’' | Epsilon
T ->FT’'

T -> %xFT' | Epsilon
F -> (E) | int

the parse table might look as below

Top of Stack Input int + * () $
E E — TE E — TE'
E’ E' — +TFE' El ¢ | E —e¢
T T —FT' T —FT'
T T — ¢ T — «FT’ T —we | T —¢
F F —int F — (E)

With this parse table, it is quite easy to parse a sentence, as it is a matter of simply picking the rule from
the table, according to the current non-terminal (on the top of the stack) and the current input symbol and
pushing the right-hand side of the production back onto the stack. $ is selected if the end of the input is
reached. The parsing process begins with the start symbol (E) and it’s right-hand side (TE’) is pushed onto
the stack, and so T is the top of the stack. If the next token is int, we would pick the rule T — FT’, and
so FT' is pushed onto the stack. As such, the top of the stack is now F.

This process is more generally written as

« If Xand w are both the end symbol, $, stop and accept the input

« if X is a terminal, if X = w, pop X off the stack and get the next token, otherwise halt and give a
descriptive error to the user

- If X is a non-terminal, if there is a production at position [X, w], push the right-hand side onto the
stack, otherwise halt and give a descriptive error to the user

Parse Table Construction

It is easy to perform an LL(1) parse if the parse table is already available. To construct the table, you
must compute the first and follow sets of the non-terminals from the grammar. These are sets of terminal
symbols. If these sets are available, the construction of the table is a simple procedure which can be
performed automatically.

Hugh Baldwin 19 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - LL(k) Parsers

First Sets

For the grammar

« E— TE

E — +TE | €

T—FT

T — «FT' | e
« F— (E)|int
The first sets of its non-terminals are
« First(E) = First(T) = First(F) (Rules 1&3) = {(,int)} (Rule 5)
e First(T’) = {x, ¢} (Rule 4)
* First(E’) = {+, ¢} (Rule 2)

The first set of a non-terminal symbol, A, is the set of terminals which start the sequences of symbols
which can be derived from A. (Written as First(A)). To calculate First(A) where A is in the form A —
X1,Xo,...,Xn, you must follow the process below

« If X; is aterminal, add X; to First(A), and that’s it.
« Otherwise, add First(X1) to First(A), as any symbol which starts X; also starts A

« If X3 cangotoe, e.g. itis nullable, add First(Xs) to First(A). Repeat this for X5 until you find the first
non-nullable symbol.

« If all of these are nullable, add € to the first set.

Follow Sets

Hugh Baldwin 20 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Bottom-Up Parsing

Lecture - Bottom-Up Parsing

14:00 01/03/24 Jiacheng Tan

Bottom-up parsing works (shockingly enough) in the opposite direction as top-down parsing. A bottom-
up parser starts with the string of terminals and works backwards to the start symbol, applying the pro-
ductions in reverse as it goes.

With the grammar

« S—AB
«A—aAle
«B—b|bB
A bottom-up parse of the string aaab would look like

- Starting with the right-most symbol, we can apply the production B — b | bB in reverse, to end up
with the string aaaB

Since neither a nor aB are the right-hand-side of a production, insert ¢ to give the string aaasB.

Replace € with A to get aaaAB

Replace aA with A to get aaAB

Replace aA with A to get aAB

Replace aA with A to get AB

Replace AB with S to get the start symbol, and therefore a valid sentence

vs Top-Down

Bottom-up parsers are typically more powerful than top-down parsers. There are excellent generator
tools, such as yacc that can build a parser from an input specification, as 1ex does for scanners.

Shift-Reduce Parsing

A shift-reduce parser takes a stream of tokens as an input and creates the list of productions used to build
a parse tree. It uses a stack to track the position in the parsing process and a parse table to determine the
correct production to use. Shift-reduce parsing is typically the most common and most powerful method
of bottom-up parsing.

One type of shift-reduce parser is an LR parser (Scans input from left-to-right, using a reversed right-
most derivation)

The Shift-Reduce Process

When parsing a string of tokens, v, the input is initialised to v and the stack is empty. At each step, the
parser can take one of four actions at each step - shift, reduce, accept or error. The first step of the process
is always to shift the first token to the top of the stack.

For this example, the grammar will be as follows

+ S—E
cE-T|E+T
e T—id| (E)

Hugh Baldwin 21 0f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Bottom-Up Parsing

Shift
The token at the start of the input string is shifted onto the top of the stack.

Reduce

Suppose that the contents of the stack are qw where w is a string of terminal and non-terminal symbols,
and g may be an empty string. If there is a production such that A — w, the stack can be reduced to gA.
This means that the production for A is applied backwards, such that we replace the right-hand-side (w)
with the left-hand-side non-terminal (A). In this case, w is known as a handle.

Accept

If the entire contents of the stack has been reduced to the start symbol (S), and there are no remaining
input tokens, the input is a valid sentence in the parsers grammar. This means that the parser has ended
in an acceptance state.

Error

If it is not possible to Shift, Reduce or Accept, then the parser must Error. In this case, the sequence on
the stack cannot be reduced to the left-hand-side of any production, and any further shifting would be
pointless as the input cannot form a valid sentence in the parsers grammar.

Hugh Baldwin 22 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Scopes and Memory Allocation

Lecture - Scopes and Memory Allocation

14:00 11/03/24 Jiacheng Tan

Variables

A variable is a place-holder for a run-time value. Each variable has multiple run-time attributes. These
attributes include:

« Name - The name which is used in code to refer to the variable

Address - The memory address which stores the value of the variable

Value - The contents of the memory which corresponds to the variable

« Type - The range of values the variable can store, and the operations which can be performed upon
it

Lifetime - The time for which the variable is bound to the specific memory location

Scope - The area in code which the variable is accessible

Implicit vs Explicit Declaration

A variable is introduced into the scope using a declaration. This can be done implicitly or explicitly. An
explicit declaration is a statement in the source code which defines the type and name of a new variable,

e.g.
C - int 1i;
Pascal - i : integer

An implicit declaration is a mechanism by which variables are automatically assigned a type based
upon conventions of the language, rather than declaring it manually. For example, in Fortran the type of a
variable is defined by the first character of the variable name. If the first characteris I, J, K, L, M, or N then
itis an integer, otherwise it is real.

Another form of implicit declaration is type inference. For example, if you define a 1ate variable in
Dart, it infers the type of the variable from the first value which is assigned to it, e.g.

late final variable;

variable = "This is a string”;

In this case, the variable would be assigned the String type.

Binding
A binding is an association between an entity and attribute, such as between a variable and it’s type, or a

symbol and the operation it corresponds to. Binding can take place at many different times, but is always
referred to as the binding time. An example of this are the following C statements

1. int x;
2. x = 1;
3. x =x + 1;

Hugh Baldwin 23 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Scopes and Memory Allocation

In this case,
« The type of x is bound at compile time, as C is a statically typed language

« The range of values which x can take is bound when the compiler is designed, as this is when they
pick the number of bits, and therefore maximum value that an integer can be

» The operation of the + operator is bound at compile time, as this is when the types of it’s operands
are known

« The value of x is bound at run-time, since that is when the statement is executed

Binding can also take place at load time (when the variable is bound to a memory location) or link time
(the variable in one module is bound to another module)

Static vs Dynamic Type Binding

A type binding can be either static or dynamic. It is static if it occurs before run-time, e.g. at compile time,
and remains unchanged throughout the execution of a program. Declarations always have type informa-
tion, and so binding is done at compile time. Languages with static type declaration are known as statically
typed as, once set, the type cannot change. This gives the advantage of type errors being detected at com-
pile time, and using less memory for each variable, but it is not very flexible and can lead to issues when
user input is involved.

A dynamic type binding occurs when the type is bound during execution, or if it is able to change at
run-time. This is the case in languages such as Python, JavaScript and PHP. These languages are known
as dynamically typed, since the type of any given variable is unknown until run-time and can change at any
point. This has the advantage of being more flexible (useful when user input is necessary) and allowing the
developer to not need to know the type of a variable when the program is written, but has a much higher
overhead due to dynamic type checking, and makes compile-time type error detection impossible.

Strongly and Weakly Typed Languages

A language is known as strongly typed if all type errors can be detected by the compiler. In this case,
a language is also type safe, as it is impossible for the program to crash due to an invalid type. Some
examples are Java, Haskell and Ada. Some languages may seem to be strongly typed languages, such as
Fortran or C, but actually aren’t. A strongly typed language can be either statically or dynamically typed.

A weakly typed language is any language which is not strongly typed, such as JavaScript. Once again,
a weakly typed language can be either statically or dynamically typed.

Scopes

A block is a section of code, which defines the local environment for any given statement. Blocks are
usually denoted by a start and end marker, such as in C, which uses { and %, but can also be denoted by
indentation, if you are a masochist and/ or sadist (cough cough Python). A block can contain variables local
to said block, and has it’'s own reference environment (the names and identifiers which are accessible to
statements in the block).

Most languages allow blocks to be nested within each other, but some may restrict the type of blocks
which can nest. In C and Java, methods can be nested within classes and other blocks, but not within
other methods. In Python and Pascal, it is possible to nest a method within a method.

Since blocks contain variable definitions, the local reference environment for each statement must be
determined, which also allows you to determine the scope of identifiers. The scope determines where
each identifier can be used, and if an error should be thrown if there are multiple identifiers with the same
name. In most languages, the scope of an identifier is the block in which it is declared and, by extension,
any nested blocks. There is also a scope known as the global scope, which allows identifiers within it to
be accessed anywhere within the program. These are known as global identifiers, and are typically only
used when they are absolutely necessary, to reduce the chance of overlapping identifiers.

Hugh Baldwin 24 0f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Scopes and Memory Allocation

Duplicated Identifiers

Most languages have arule or set thereof to determine which declaration of an identifier takes precedence.
In languages such as Pascal, the local variable hides any variables with a larger scope. In this case, it is
said that there is a hole in the scope of the hidden variable, as it’s scope is everywhere aside from any
blocks in which it is hidden.

Some languages just flat out refuse to allow any duplicated identifiers, as this reduces the confusion
since it will cause an error at compile time, rather than a mysterious run-time error.

Static and Dynamic Scoping

In the previous example, the scope of variables is determined by their visibility, and therefore the scope
depends upon the lexical structure of the program, and the compiler can therefore determine the scope
of all variables. This is known as static or lexical scoping. On the other hand, with dynamic scoping, the
reference environment depends upon the sequence of sub-programs, rather than the layout of the nested
blocks. This means that the scope of any given identifier can only be determined at run-time.

Dynamic scoping is typically less used than static scoping, as it is less reliable due to the unknown
order of execution and results in poor code readability. It is however, easier to implement using stacks
and resolving a variable does not require tracing the structure of the entire program.

Lifetimes

The lifetime of a variable is the period of time for which the variable exists, and has a value that is only
known at the time of execution. The lifetime of a local variable is the execution of the method. Each
recursive execution of a method has its own copy of any local variables. The lifetime of a global variable
is the execution of the entire program.

This is related to the way that memory is allocated and deallocated. There are several basic mecha-
nisms which a programming language may use to allocate memory

« Static allocation is when a fixed memory address is retained throughout the variables lifetime

» Stack-based allocationis done on alast-in first-out basis, and is used for function calls, as the lifetime
of the variable is that of the function

» Heap-based allocation is used for variables that are dynamically allocated. They often have no iden-
tifier, and are therefore known as anonymous variables, and can only be referenced by pointers

Hugh Baldwin 25 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Elementary Data Types

Lecture - Elementary Data Types

14:00 15/03/24 Jiacheng Tan

An elementary data type is one which has a fixed size in memory. Typically, languages have a few ele-
mentary data types, such as numeric types (Integer, Floating Points, etc), Boolean, Character, etc. There
are also usually “enumerated” types, which can take any of a set of values, which are usually represented
internally as Integers.

Most imperative languages also provide built-in operators for computing using these elementary data
types. These typically include arithmetic, relational and boolean operations, such as
+ - x [/ == < <=>>= || &&, etc.

Enumerated Types

Enumerated types are ordinal types, in which the possible values can be associated with the set of positive
integers. This means that they can be used to represent order, and that you can effectively ‘index’ the
values using an integer.

Some built-in types are enumerated, but they can also be user-defined. This is useful for storing infor-
mation such as the day of the week, month of the year, or season. For example, you could represent the
seasons in C++ as follows

enum Season = 1§
spring,
summer,
autumn,
winter,

[

Then, a variable which has the type Season could store any of the four seasons.

Most languages also automatically define operators for enumerated types. These include basic func-
tionality such as the equality operator, but more complex functions like relational operators, which allow
you to do things like checking if the season is ‘greater’ than summex. You can usually also interact with the
real data type behind the enumerated values, which is typically an integer. This allows you to increment
or decrement, as well as performing arithmetic with your enumerated values.

Pointer Types

Pointer (or reference) variables store a location in memory as their value. This allows them to point to a
piece of data in memory. Pointers are meant to work with memory locations, allowing for more efficient
use of limited memory space. As this is less of an issue nowadays, fewer and fewer languages allow you
to access the raw memory locations, and is typically limited to lower-level languages like C and C++.

Memory is often dynamically allocated from the heap, and are known as heap-dynamic variables. Typ-
ically, they do not have an identifier, and can therefore only be accessed by using a pointer to the memory
address.

Pointer dereferencing is the act of accessing the value stored in the memory pointed to by a pointer.
With the dereferenced value, you can read the current value or overwrite a new one. This is useful, as it
allows you to pass a pointer to a memory location, and modify it in a function, without having to pass a
value in and return the modified value. This is especially useful in low-level languages which don’t support
compound data types.

There is also a special null pointer, which is usually stored as 0. This is used to signify that a pointer
does not point to any location, and is typically the value which pointers are initialised to.

Hugh Baldwin 26 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Elementary Data Types

Dynamic Memory Allocation

Since a pointer is a reference to a location in memory, you can also use them to dynamically allocate space
in memory for values at runtime. This allows you to both store as many values as you need to, but also to
store arbitrarily large values in memory. For example, if you wanted to store a string, you might not know
how long the string will be at compile time. Therefore, you can dynamically allocate a space in memory
which is large enough to store the string, and then access it using a pointer.

Memory Deallocation

Memory addresses need to be deallocated when they are no longer needed, otherwise the program’s mem-
ory space would fillup over time, with unused values being stored unnecessarily. Deallocation can be done
either implicitly or explicitly. Assigning null to a pointer removes the only way of accessing the allocated
memory, which still contains the last value which was assigned to it. The runtime environment can then
‘garbage collect’ the memory address and deallocate it so it can be used again. To deallocate memory
explicitly, you call the free function, with a pointer to the address you wish to free. This will mark it as
available for reuse. It is good practice to also set the value of the pointer to null, so that you don’t have
a dangling pointer.

Array Indices

In languages such as C, arrays are actually just pointers to a block of memory. For example, an array of
10 integers would be stored in memory as a contiguous block of memory which is 10 times the size of an
integer. Then, when indexing the array, the specified index acts like an offset, adding to the pointer to the
first element to get the address of the value you’re interested in. Since they are accessed via a pointer, it
is also possible to dynamically allocate an array of arbitrary length, useful for storing a list of input values.

Dangling Pointers

A dangling pointer is one which points to a memory address which has already been deallocated. This
is dangerous and liable to cause the program to crash, as it may attempt to read from or write to the
memory of another program. On Unix systems, accessing a dangling pointer guarantees a crash as the
kernel will notice the program attempting to read outside of its assigned memory and kill it, giving a
SEGMENTATION FAULT error. On Windows systems, this could still cause a crash as the program may
write into another programs memory, or read an invalid value placed there by a different program. Be-
cause of this, it’s important to destroy the pointer when it is deallocated, typically by setting its value to a
null pointer.

Hugh Baldwin 27 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Compound Data Types

Lecture - Compound Data Types

14:00 22/03/24 Jiacheng Tan

A compound (or structured) data type is one which is made up of simpler types. This includes types
such as arrays, strings, records, structs and maps.

Arrays

Arrays or lists are the most common compound data type and are found in most programming languages.
In general, an array has several attributes, namely

« The type of its elements (This is also the compound type)

» The type of its indices (This is usually integers, but it is possible to use an enumerated type in some
languages)

« The number of elements in the array

Different languages define each of these attributes in different ways. For example, some languages
like Dart have dynamically sized and allocated arrays, which allows you to increase or decrease the size of
the array at runtime, but others, such as C or C++, have statically sized and allocated arrays. This means
that the size of the array is determined at compile time, and cannot change at runtime. Different languages
might also use a different starting index for their arrays. For example, C uses 0-indexed arrays, but higher
level languages such as Lua use 1-indexed arrays.

Dynamic Arrays

There are two methods of creating dynamic arrays - stack-dynamic and heap-dynamic arrays. A stack-
dynamic array has its size dynamically set, and the storage is allocated at runtime. They live on the stack,
and the size of the array is fixed after it’s created. Heap-dynamic arrays live on the heap and are able to
dynamically change size at runtime.

Heterogeneous Arrays

A heterogeneous array is one in which the type of the elements is not necessarily the same. This is only
supported by a few high-level languages: Perl, Python and JavaScript. A heterogeneous array can also be
the element of another heterogeneous array, which allows for some very funky stuff.

Rectangular & Jagged Arrays

A rectangular array is a multi-dimensional array in which each row has the same number of elements and
each column has the same number of elements.

A jagged array is a multi-dimensional array in which each row has a varying number of elements,
columns don’t really exist as they would be impossible to align meaningfully. This is simply an array of
arrays. Supported by C, C++ and Java.

Strings

In the vast majority of languages, a string is an array or list of characters. More literally in some languages,
such as C/C++ and Haskell, but in higher-level languages, it is usually a built-in data type which hides its
true type behind a ‘fake’ type. These languages also tend to have a set of logical operations such as finding
the length of a string, and functions such as concatenation.

Hugh Baldwin 28 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Compound Data Types

Records

A record is a compound data type which is composed of a number of named elements. These are useful
for storing information about an object, such as a Person or Student, while encapsulating them into one
pseudo-type.

Variant Records

Records are typically very inflexible, and may be memory-inefficient since all of the values of a record
have a fixed size and set of fields. For example, if you wanted to store a student record, you would need
to store a name, registration number, information about their course, and a year of entry and graduation.
This means that even if the student has not graduated, you still need to store a null value for their year of
graduation. Pascal has a variant record, which allows you to store a value for one element, if and only if
another element has a specific value. In the case of a student record, you could store a boolean value for
their graduation status, and then only store a graduation date if the status is true.

Unions

C & C++ have a type known as a Union rather than variant records. Unions are designed to store data of
multiple types in the same memory space. When you define a union, you specify the types that should be
stored for that value, but then you have to set the type and reference it as such elsewhere in the code. This
allows you to store values for different purposes without wasting memory. You can have only one of the
values stored at a time, since they would use the same space in memory. The main difference between
thisand avariant record is that the two values stored in a union are not related in any way, and it is possible
to ignore the precedent set elsewhere in the code, which can cause issues.

Structs

Languages such as C, C++, C# and Rust all have a similar concept to a record, known as a struct. These
perform a similar function to records, but can also include member functions. A member function does
not directly access the data in the struct (unlike a class), but is used to group a function with the data type
it operates on.

Classes

Structurally, classes and structs are very similar, but a class has a constructor (a function which is called
when the class is instantiated), and methods rather than member functions. A method is able to directly
access the data stored in the class, and is therefore able to act as a getter/setter. Another difference is that
in most languages, member functions in structs are public by default, but methods in classes are private
by default.

Hugh Baldwin 29 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Expressions and Assignments

Lecture - Expressions and Assignments

14:00 15/04/24 Jiacheng Tan

Expressions

An expression is a combination of values, variables, operators and/ or function calls. Expressions can be
used to evaluate mathematical values, move data around and more.
The main types of expressions are

« Arithmetic
- Relational
-« Boolean

« Assignment

These expressions can then be used and chained together to create various algorithms and programs.
To be able to correctly evaluate expressions, you must know the rules of precedence and the rules of
associativity of operators.

Rules of Precedence

The rules of precedence determine the order in which operations should be evaluated in an expression.
The typical order is along the lines of

1. Parentheses

2. The unary operators ++ and - -
3. The unary operators + and -

4. The binary operators * and /
5

. the binary operators + and -

Rules of Associativity

The rules of associativity determines how operators with the same precedence are grouped together, if
they have been left in an ambiguous state with no parentheses. For example, the expression3 / 5 % 0
is ambiguous as / and * have the same precedence. Therefore, the order of operations is determined
using the associativity of each operator.

Any given operator may be

 Associative - The operations can be grouped in any order,e.g. a * b * ccouldbe (a * b) * c
ora x (b x ¢)

- Left-associative - The operators must be grouped together from left-to-right

« Right-associative - The operators must be grouped together from right-to-left

Most mathematical operators inherently have associativity, such as subtraction and division being left-
associative and addition and multiplication being associative.

Many programming languages include a table of operator precedence and associativity in their docu-
mentation, but in general, most operators are left-associative apart from the assignment operator, which
is necessarily right-associative.

Hugh Baldwin 300f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Expressions and Assignments

Operator Overloading

When a language uses the same operator for more than one purpose, it is overloading the operator. For
example, in Dart + is used for adding ints and floats, but is also the operator for string concatenation.
This means that the function of the operator is determined by the semantics of the language, as they
determine which variant of the operator should be used. Some languages, such as C++ and C# allow
user-defined operator overloads, which can be used to improve the readability of user-defined classes
and data types.

Side Effects

An expression is said to have a side effect if as well as returning a value, it also modifies a variable or
changes the flow control of the program. The four main causes of side effects are

« Assignment operators
» Increment/ Decrement operators
 Function calls

« Method invocation

Assignment as an Expression

In some languages, the assignment operator (=) is treated the same as any other binary operator, and as
such still returns a value. However, it also has the side effect of changing the value of the left operand.
For example, the expression x = y + 1 both returns the valuey + 1, and changes the value of x to be
y + 1.

This has the advantage of allowing you to do things like x = y = z + 1, but also has issues. For
example, if you were to use an if statement with the condition x=y, you might be trying to use it as an
assignment and be treating the returned integer as a boolean value, which is perfectly valid, or you might
have missed the second = to use the relational operator ==. This mistake is impossible to detect by the
compiler, but may occasionally be detected by the IDE or Linter as a logic error.

Compound Assighment Operators

A compound assignment operator is one which combines an assignment with some form of arithmetic
operator. This includes operators such as += and -=, which add and subtract the right operand from the
current value of the left operand, but also assign the new value to the left operand.

Unary Assignment Operators

Some languages also include unary assignment operators, which both perform some arithmetic and assign
that value to the only operand. This is operators such as ++ and - -, which increment and decrement
the value respectively. The order of assignment and increment is important, as ++count and count++
have two different meanings. In C, sum = ++count would increment count by one, then assign it to
sum (pre-increment), but sum = count++ would assign count to sumand then increment count by one
(post-increment).

Type Conversions

Different languages follow different approaches when it comes to the compatibility of different types, when
used inan expression. Forexample, some languages such as Dart require you to explicitly convert the types
using a built- in function, but some languages such as JavaScript allow you to cast values between types.
There are also some languages which allow casting for some types, but require explicit type conversion
for others.

Casting is type conversion which is explicitly requested by the code, but which does not make use of a
function. For example, in C you can cast an unsigned integer to a signed integer using

Hugh Baldwin 310f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Expressions and Assignments

uint a = 10;
int b;
b = (int)a;

Type coercion is when casting is done implicitly by the compiler. This means that the compiler checks
the compatibility of the types of the left and right operand, and automatically casts them if they are com-
patible. This is used heavily in scripting languages such as JavaScript and Python.

Arithmetic Type Conversions

There are two types of type conversion - widening and narrowing. A widening conversion is one in which an
object is converted to another type which can store all values of the original type, and more. One example
of this is casting an integer to a long integer (32-bit integer to 64-bit integer). This type of conversion is
completely safe and used all the time. A narrowing conversion is one in which the new type can store only a
subset of the values the original type could store. An example of this is converting an integer to an unsigned
integer. This type of conversion is unsafe since an overflow or other issue could occur if the programmer is
not careful. Typically, compilers will only coerce types when it is safe to do so, e.g. a widening conversion.

Notations

There are several different ways of writing any given expression, which are known as different notations.
The notation used in mathematics and most programming languages is known as Infix Notation, but the
issue with it is that it’s inherently ambiguous, at least when not used in conjunction with the rules of asso-
ciativity and precedence. Given the inherent issues with infix notation, several other notations have been
developed.

Prefix Notation

With prefix notation, operators appear before the operands. For example, the expressiona + b - ¢ * d
would be written as -+ab«cd. It is evaluated from left-to-right by combining the operator with the two
operands in front of it, meaning that is inherently unambiguous. When evaluating the previous expression,
you would evaluate the operators in the following order

-+abxcd

- (+ab)*cd

- (+ab) (xcd)
(- (+ab) (%cd))

Below is the same expression, but using numbers to make it easier to see the order. (Numbers are shown
in brackets for ease of reading)

-+(7) (9)%(2) (5)
- (16)*(2) (5)

- (16) (10)

(6)

This is the same expression, but witha = 7,b = 9,¢c = 2andd = 5

Postfix Notation

With postfix notation, operators appear after their operands. Forexample, the expressiona + b - ¢ * d
would be written as either ab+cd*- or abcd*-+. (I'm not sure about that second one so I'll just use the
first here on out). It is also evaluated left-to-right, but by combining two operands with the operator after
them. This notation is also inherently unambiguous, but is harder to convert to since there are several
valid options. To evaluate the previous expression, you would do the following

Hugh Baldwin 320f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Expressions and Assignments

ab+cdx-
(ab+)cdx-
(ab+) (cdx) -
((ab+) (cd*)-)

Once again, below is the same expression but using the numbersa = 7,b = 9,¢c = 2andd = 5

(7) (9)+(2) (5) -
(16) (2) (5) *-
(16) (10) -

(6)

Cambridge Prefix Notation

Cambridge prefix notation (or just Cambridge notation) is a variant of Prefix notation which introduces
parentheses. This has the advantage of allowing operators like + and - to be n-ary, e.g. a + b + ¢
would be written as ++abc in standard prefix notation, but as (+abc) in Cambridge notation.

Hugh Baldwin 330f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Control Structures

Lecture - Control Structures

14:00 19/04/24 Jiacheng Tan

The flow control or execution sequence allows you to implement complex algorithms, and can be ex-
amined on several levels, namely

« Within expressions (i.e. rules of Associativity and Precedence)
« At the statement level

« At the program unit level

Statements which enable the program to select between different execution paths are known as control
statements. This includes conditionals such as if and case blocks, as well as while loops.

In previous years, unconditional branching statements like break and goto were the only options
for controlling the flow of execution, but these led to poor readability and maintainability. Since then,
it was realised that such unconditional branching statements are actually unnecessary, as long as other
mechanisms such as functions and procedures are available.

Structured Programming Theorem

The Structured Programming Theorem states that all algorithms that can be expressed using a flowchart
can also be implemented in programming languages with two basic control statements — selection and
pre-test logical loops. This also means that these control statements are necessary for any imperative
programming language. In most programming languages, there are several variations of each type of con-
trol statement.

Selection Statements

Selection statements pick between two or more execution paths in a program. These typically fall under
one of the two sub-types, two-way selection statements or multiple-selection statements.

Two-Way Selection

This mainly consists of basic selection statements such as if-then-else blocks. The general syntax of
a two-way selection is as follows—

if {control expressiont
then {execution path?
else {execution path?

In this case, the control expression could be any expression which evaluates to a boolean type, since
there are only two possible execution paths. Each of the execution paths could be as simple or complex
as needed, and are typically enclosed within parenthesis (in sane languages) or within an indented block
in python.

Most languages also support nesting selectors, which is made easier in cases which use parenthesis.
In cases which don't, it is typically assumed that an else matches to the nearest previous if statement.

The vast majority of languages also support a short-hand 1if statement, which in most C-derived lan-
guages, is written as follows:

(icontrol expression}) ? {execution path} : {execution path%;

This is usually only used when assigning a value to a variable based upon a condition, but could theoreti-
cally be used anywhere the conventional notation is used.

Hugh Baldwin 34 0f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Control Structures

Multiple-Selection

A multiple-selection allows the selection of any number of execution paths based upon the value of the
control expression. These usually take the form of a switch-case block, as shown below-

switch {control expression}
case ivaluel}? {execution path?
case jvalue2} {execution path}

default {execution path?}

The control expression can typically take any of many types, but they are typically a number, character,
string or enumerated type.

Most languages use the fall-through behaviour once reaching the end of a cases execution path. This
means that they fall-through to the next case and execute that path as well. This is useful since it allows
you to specify multiple values which use the same branch, but might not always be desired. In these cases,
you can end the execution path with a break statement, which immediately skips to the end of the switch
block.

Pre-Test Logical Loops

A pre-test logical loop is a mechanism for repeatedly executing a statement based upon a simple condition.
There are typically two types of loop, for loops and while loops, which are controlled by a counter and
logic statement respectively.

For Loops

A for loop typically takes the following form-

for ({expression 1%; iexpression 2%; {expression 3})
loop {execution path?

With this syntax, the first expression is for initialisation and is only evaluated once, before the loop begins.
The second expression is the loop control, and is evaluated before each execution of the loop. It must take
a boolean value, and determines if the loop should execute again or terminate. The final expression is for
stepping, and is executed after every execution of the loop body.

Logically Controlled Loops

There are two sub-types of logically controlled loops, typically known as while and do-while loops.
These pre-test and post-test the control expression, respectively. This means that a do-while loop will
always execute at least once, and a while loop may not execute at all. They typically take the following
forms—

while {control expression}
loop {execution patht?

and

do
loop {execution path?
while {control expression}

respectively.
Any for loop can be re-written as a while loop, with an external and manually incremented counter.

Hugh Baldwin 350f42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Control Structures

Unconditional Branching

Any statement which changes the flow of execution without a condition is branching unconditionally.
These usually include break, continue and return. Within the previously discussed looping structures,

« break unconditionally exits the loop immediately

« continue unconditionally skips the remainder of the current iteration, but allows the loop to con-
tinue

« returnterminates the current function or method call and immediately returns a value to the caller

In some languages, such as Java, a break or continue can be either labelled or unlabelled.

Unlabelled & Labelled Breaks

An unlabelled break terminates the innermost nested switch, for, while or do-while structure. On the other
hand, a labelled break terminates a correspondingly labelled structure, as listed before. Execution then
jumps to the statement immediately after the labelled structure, and continues as usual. This may be
useful when searching through a two- dimensional structure.

Unlabelled & Labelled Continues

Similarly, an unlabelled continue terminates the current iteration of the innermost nested for, while or do-
while loop, and evaluates the control expression before continuing normal execution. A labelled continue,
on the other hand, skips the current iteration of the correspondingly labelled loop.

Hugh Baldwin 36 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Functions and Parameter Passing

Lecture - Functions and Parameter Passing

14:00 26/04/24 Jiacheng Tan

A subprogramis a fundamental part of program flow control, and are present in almost every language.
Decomposing a problem in to sub-problems makes it much easier to handle, as the complexity of any
given part is much lower. Subprograms go by many names, but are usually called a function, procedure or
subprogram. 1t is any piece of code which is identified by a name, and has its own local reference space.
There is usually some facility to exchange data with the other code using parameters. Procedures and
functions are both types of subprogram, where a function returns a value, and a procedure does not.

Abstraction

Subprograms provide one of the two fundamental abstractions in programming languages

» Process control abstraction — Allows details of procedures to be hidden, and only exposes the inter-
face and not the implementation

- Data abstraction — Allows the use of sophisticated data types without needing to know their imple-
mentation, only the interface

Function Declarations & Definitions

The definition of a function refers to the actual implementation of the function. This includes both the
header or interface, as well as the body of the function, the actual code that runs. The header consists
of the name, return type, and parameter profile of the function. The parameter profile of a function is
the number, order and types of parameters, as well as their names in languages which support named
parameters.

The declaration of a function (sometimes known as the prototype) is the header of the function on its
own. Thisis used in languages like C and C++ to expose functions to other files in the program. If a function
needs to be used in another file, it’s declaration is placed in a header file, which is then included in other
files. This allows the header of the function to be exposed, without exposing the implementation as well.

Parameters and Return Values

A formal parameter is a dummy variable in the function header, which can then be referred to by the im-
plementation of the function. The actual parameters are then filled in at runtime, and is usually either the
value or address which the caller used. Functions are able to report results by returning a value, typically
of a type which was specified in the declaration of the function. When a return statement is called, the
value is passed back to the caller, and execution resumes at the caller.

Parameter Binding

Actual parameters can be bound to the formal parameters in one of two ways — by position or by keyword/
name. When bound by position, the values are bound in the order that they appear in the function call,
which is safe and easy. When bound by keyword, the names of the formal parameters are specified manu-
ally in the function call, and the order they appear is entirely irrelevant. This means that it is impossible for
a programmer to accidentally put the wrong values into the parameters, but it does mean that they have
to remember the names of the formal parameters.

Hugh Baldwin 37 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Functions and Parameter Passing

Parameter Passing

There are several ways in which a parameter can be passed into a function. These determine how the val-
ues are sent to the function, and if it is possible for the function to modify them. The relationship between
the actual and formal parameters can be one of three models

« In (Put) Mode — Formal parameters receive data from the actual parameters, aka pass by value
» Out (Put) Mode — Formal parameters transmit data to the actual parameters, aka pass by result

« Inout Mode — Both occur, can be implemented either using both pass by value and result, or by
passing the reference

The vast majority of languages support passing values by value, result or both and default to passing
by value. Only some languages support passing values by reference, and most are low level, such as C or
C++.

Pass by Value

The value of the actual parameter is used to initialise the corresponding formal parameter, at the time of
function call. During the execution of the function, the local variable uses the value passed to it, and can
be modified, but is then destroyed when the function returns.

This is very simple and fast for sending elementary data types, and is the default in many languages,
such as C, C++ & Java. It does have the downside of needing to use more memory, as the value is stored
twice, and needing to move data in memory, which can be expensive, depending upon the type of the
variable.

Pass by Result

The value is transmitted to the variable when control returns to the caller, and no value is sent from the
callerto The function. During execution of the function, the formal parameter acts as a local variable within
the function, and their values are copied to the real parameters when control returns to the caller.

This is also simple, but does have quite a few limitations and downsides. Each of the parameters must
be a variable, and the order which the values are copied back to the actual parameters does matter. This
is a bigger issue in languages which have multiple implementations, such as C#.

Pass by Value and Result

Sometimes known as pass-hy-copy, this is a combination of the two previous methods. When the function
is called, the values of the actual parameters are stored in the formal parameters using pass-by-value, and
at the end of the function call, the values of the formal parameters are copied back to the actual variables.

This facilitates bi-directional data exchange, but does have the disadvantage of needing to copy the
data twice, and store two copies of it the whole time.

Pass by Reference

Rather than passing the values, a pointer to the address in memory is used instead. This is sometimes
known as pass-by- sharing. The formal parameters and actual parameters are simply treated as two point-
ers to the same address in memory, which can be written to by both the caller and the function.

This also allows bi-directional data exchange, but without having to make multiple copies of the data.
This makes it much more efficient, and more convenient than passing by value and result, but could be
seen as insecure, as it gives the function direct access to the memory space.

Hugh Baldwin 38 0f 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - Functions and Parameter Passing

Local Reference Space

When a function is called, a new local reference space is created, which contains all of the local variables
and actual parameters. In most languages, local variables are created on the stack, as stack-dynamic
variables, but if the variable is labelled as static, it must be assigned statically.

Hugh Baldwin 39 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - ADTs and Concurrency

Lecture - ADTs and Concurrency

14:00 26/04/24 Jiacheng Tan

Abstraction

Abstraction means separating the interface of a thing from the details of its implementation, such that
the programmer only needs to know how to use it, but not how it does its job. This improves readability,
maintainability, re-usability and security of software and libraries.

Modern languages typically provide two types of abstraction— data abstraction and process/ control
abstraction.

Data Abstraction

Data Abstraction enforces a clear separation between the abstract properties of a data type, and the con-
crete details of its implementation. The abstract properties are visible to client code (any code which
makes use of the abstracted item) which makes use of the data type. This includes information about
methods which can be used to manipulate the data, and how items are arranged on a stack. The con-
crete details of the implementation are kept entirely private, and can change version-to-version without
affecting any client code.

Data abstraction is achieved in most languages by defining an Abstract Data Type (ADT)— user defined
data types which consist of a set of data, and a set of operations which can be performed upon the data.
ADTs are often used to implement a data structure, which acts as a representation of the data and provides
implementations for the operations which are allowed on the data. This includes some structures included
in languages, such as lists, dictionaries, and more.

ADT Interfaces

An interface is a method of interaction between two parties— the implementer of the ADT, and the user
of the ADT. The implementer is responsible for the code which performs the operations in a correct and
efficient way, and the user is responsible only for the code which interacts with the interface of the ADT.
The interface defines the representation of the ADT which the user will actually interact with, but abstracts
away the implementation details.

When implementing a new ADT, you must select a number of core operations which users will need to
interact with your data type. The standard set of operations which almost all ADTs need are: a method to
add an item; remove an item; find or retrieve an item. There are also some operations which some ADTs
will not need, but are typically implemented anyway, such as checking empty/ fullness, retrieving a subset,
etc.

Another thing to consider when implementing a new ADT is how you will actually store the data. For
example, you need to select an internal storage container, which is used to actually hold the items in the
data structure. Users should not need to know or be able to interfere with the internal representation of
the data. If users actually need to interact with the data, accessors and mutators should be used.

Concurrency

There are several levels of concurrency, but each of them involve multiple actions occurring at once.
» Machine Instruction level — Via processor design
« Statement level — Statements in high-level languages which support parallelisation

Hugh Baldwin 40 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - ADTs and Concurrency

« Subprogram level — A single program has multiple subprograms running at the same time

» Program level — Multiple programmings running at the same time, or one program running on several
computers on a network

Each of these levels has a different name. When multiple programs are running on a single computer,
itis known as multitasking, but when a single program runs across several computers, it is known as a dis-
tributed program. If a program runs multiple subprograms on one computer, it is known as a concurrent/
parallel program, and is said to be multi-threaded.

Subprogram Concurrency

A task, process or thread of a program is a ‘unit’ that can be executed in parallel with other units. They
differ from ordinary subprograms, in that

« Athread may be started implicitly
« When a thread starts or stops execution, the rest of the program is not necessarily suspended
« When a thread finishes execution, control does not have to return to the caller

A thread is disjoint if it does not communicate with, or affect the execution of, any other threads in
the program. Otherwise, it is a joined thread and needs to be synchronised. Inter-thread communication
is necessary for joint threads, because threads may need exclusive access to a resource, or they may
need to exchange information with another thread. Unsynchronised, but joined threads can lead to race
conditions, or deadlocks.

Arace condition occurs when the result of the execution of a set of threads depends upon the execution
order of two or more threads. A deadlock occurs when two or more threads are waiting for the other thread
to finish, while holding a resource or resources that the other thread(s) need(s), and therefore none of the
threads ever finish execution.

Synchronisation

To prevent race conditions and deadlocks, the order of execution of the tasks must be controlled, and
so the threads must synchronise with each other. This requires communication between the threads,
which can be provided by— shared non-local variables, message passing, or special data types such as
semaphores or monitors. Synchronisation can be cooperative or competitive, depending upon the type of
resources which must be shared.

Cooperative Synchronisation

Cooperative Synchronisation ensures that two or more threads work cooperatively to avoid a deadlock.
One thread must wait for the other to finish using the resource before the other(s) can proceed. Usually,
there is more than one unit of resource to be shared. This model can be shown by the producer-consumer
problem, where one thread produces something that the other thread consumes.

An example

« Thread A produces information, which Thread B consumes

They share a buffer, which can only be used by a single thread at a time

Both threads must access the buffer, but can do so in a cooperative way—

— Thread A requires that the buffer is not full before it writes to it, otherwise it must wait
— Thread B requires the buffer is not empty before it can read from it, otherwise it must wait

As long as both threads follow their respective rule, there will never be a deadlock

Hugh Baldwin 41 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

Lecture - ADTs and Concurrency

Competitive Synchronisation

Competitive Synchronisation ensures that a thread has exclusive access to a resource, which avoids race
conditions. This usually involves a single unit of resource, such as a single integer, possibly representing
the money in a bank account. By ensuring that only one thread has access to the resource, it is impossible
for one thread to read from the value as another writes to it, avoiding a race condition.

Implementation

Both cooperative and competitive synchronisation can be implemented using a special data structure,
either a semaphore or monitor. (For semaphores refer to OSINT).

A monitor is an object which encapsulates the shared resource and guarantees that, at any point in
time, at most one thread has access to the resource. This is the monitor’s mutual exclusion property.
Monitors are typically used to implement competitive synchronisation. This can be achieved by using a
so-called private lock. The lock, which is initially unlocked, is locked at the start of each method call for
the resource, and is unlocked when the method returns execution to the caller. Monitors are used by
languages such as Java, C#, Python, Pascal, Ada, etc.

Hugh Baldwin 42 of 42 M30235
https://github.com/HughTB/cs-notes

https://github.com/HughTB/cs-notes

	I Teaching Block I
	II Teaching Block II
	Lecture - Intro to Programming Languages
	Lecture - Implementation and Compilation
	Lecture - Regular Expressions
	Lecture - Deterministic Finite Automata
	Lecture - Describing Language Syntax
	Lecture - Syntax Analysis and Parsing
	Lecture - LL(k) Parsers
	Lecture - Bottom-Up Parsing
	Lecture - Scopes and Memory Allocation
	Lecture - Elementary Data Types
	Lecture - Compound Data Types
	Lecture - Expressions and Assignments
	Lecture - Control Structures
	Lecture - Functions and Parameter Passing
	Lecture - ADTs and Concurrency

